nyoj--44--子串和(动态规划)
子串和
时间限制:5000 ms | 内存限制:65535 KB
难度:3
- 描述
- 给定一整型数列{a1,a2...,an},找出连续非空子串{ax,ax+1,...,ay},使得该子序列的和最大,其中,1<=x<=y<=n。
- 输入
- 第一行是一个整数N(N<=10)表示测试数据的组数)
每组测试数据的第一行是一个整数n表示序列中共有n个整数,随后的一行里有n个整数I(-100=<I<=100),表示数列中的所有元素。(0<n<=1000000) - 输出
- 对于每组测试数据输出和最大的连续子串的和。
- 样例输入
-
1 5 1 2 -1 3 -2
- 样例输出
-
5
- 提示
- 输入数据很多,推荐使用scanf进行输入
- 来源
- 这种题最近总是遇到,就是一个无脑加,然后一个比较和判断
#include<stdio.h> #include<string.h> #include<algorithm> using namespace std; int a[1000100]; int main() { int t; scanf("%d",&t); while(t--) { memset(a,0,sizeof(a)); int n; scanf("%d",&n); for(int i=0;i<n;i++) scanf("%d",&a[i]); int sum,max; sum=max=a[0]; for(int i=1;i<n;i++) { sum+=a[i]; if(sum<0) sum=0; if(sum>max) max=sum; } printf("%d\n",max); } return 0; }