P2854 [USACO06DEC]牛的过山车Cow Roller Coaster

题目描述

The cows are building a roller coaster! They want your help to design as fun a roller coaster as possible, while keeping to the budget.

The roller coaster will be built on a long linear stretch of land of length L (1 ≤ L ≤ 1,000). The roller coaster comprises a collection of some of the N (1 ≤ N ≤ 10,000) different interchangable components. Each component i has a fixed length Wi (1 ≤ Wi ≤ L). Due to varying terrain, each component i can be only built starting at location Xi (0 ≤ Xi ≤ L - Wi). The cows want to string together various roller coaster components starting at 0 and ending at L so that the end of each component (except the last) is the start of the next component.

Each component i has a "fun rating" Fi (1 ≤ Fi ≤ 1,000,000) and a cost Ci (1 ≤ Ci ≤ 1000). The total fun of the roller coster is the sum of the fun from each component used; the total cost is likewise the sum of the costs of each component used. The cows' total budget is B (1 ≤ B ≤ 1000). Help the cows determine the most fun roller coaster that they can build with their budget.

奶牛们正打算造一条过山车轨道.她们希望你帮忙,找出最有趣,但又符合预算 的方案. 过山车的轨道由若干钢轨首尾相连,由x=0处一直延伸到X=L(1≤L≤1000)处.现有N(1≤N≤10000)根钢轨,每根钢轨的起点 Xi(0≤Xi≤L- Wi),长度wi(l≤Wi≤L),有趣指数Fi(1≤Fi≤1000000),成本Ci(l≤Ci≤1000)均己知.请确定一 种最优方案,使得选用的钢轨的有趣指数之和最大,同时成本之和不超过B(1≤B≤1000).

输入输出格式

输入格式:

 

Line 1: Three space-separated integers: L, N and B.

Lines 2..N+1: Line i+1 contains four space-separated integers, respectively: Xi, Wi, Fi, and Ci.

 

输出格式:

 

Line 1: A single integer that is the maximum fun value that a roller-coaster can have while staying within the budget and meeting all the other constraints. If it is not possible to build a roller-coaster within budget, output -1.

 

输入输出样例

输入样例#1: 复制
5 6 10
0 2 20 6
2 3 5 6
0 1 2 1
1 1 1 3
1 2 5 4
3 2 10 2
输出样例#1: 复制
17

说明

Taking the 3rd, 5th and 6th components gives a connected roller-coaster with fun value 17 and cost 7. Taking the first two components would give a more fun roller-coaster (25) but would be over budget.

 

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define inf 2147483647
const ll INF = 0x3f3f3f3f3f3f3f3fll;
#define ri register int
template <class T> inline T min(T a, T b, T c)
{
    return min(min(a, b), c);
}
template <class T> inline T max(T a, T b, T c)
{
    return max(max(a, b), c);
}
template <class T> inline T min(T a, T b, T c, T d)
{
    return min(min(a, b), min(c, d));
}
template <class T> inline T max(T a, T b, T c, T d)
{
    return max(max(a, b), max(c, d));
}
#define pi acos(-1)
#define me(x, y) memset(x, y, sizeof(x));
#define For(i, a, b) for (int i = a; i <= b; i++)
#define FFor(i, a, b) for (int i = a; i >= b; i--)
#define mp make_pair
#define pb push_back
const int maxn = 100005;
// name*******************************
int f[1005][1005];
int L,n,B;
struct node
{
    int x,w,f,c;
} a[10005];
int ans=-1;
// function******************************
bool cmp(node a,node b)
{
    return a.x<b.x;
}

//***************************************
int main()
{
    cin>>L>>n>>B;
    For(i,1,n)
    {
        cin>>a[i].x>>a[i].w>>a[i].f>>a[i].c;
    }
    me(f,-1);
    sort(a+1,a+1+n,cmp);
    f[0][0]=0;
    For(i,1,n)
    {
        int u=a[i].x;
        int v=a[i].x+a[i].w;
        FFor(j,B,a[i].c)
        {
            if(f[u][j-a[i].c]!=-1)
                f[v][j]=max(f[v][j],f[u][j-a[i].c]+a[i].f);
        }
    }
    For(i,0,B)
    ans=max(ans,f[L][i]);
    cout<<ans;

    return 0;
}

 

posted @ 2018-03-27 19:19  planche  阅读(205)  评论(0编辑  收藏  举报