P1719 最大加权矩形
题目描述
为了更好的备战NOIP2013,电脑组的几个女孩子LYQ,ZSC,ZHQ认为,我们不光需要机房,我们还需要运动,于是就决定找校长申请一块电脑组的课余运动场地,听说她们都是电脑组的高手,校长没有马上答应他们,而是先给她们出了一道数学题,并且告诉她们:你们能获得的运动场地的面积就是你们能找到的这个最大的数字。
校长先给他们一个N*N矩阵。要求矩阵中最大加权矩形,即矩阵的每一个元素都有一权值,权值定义在整数集上。从中找一矩形,矩形大小无限制,是其中包含的所有元素的和最大 。矩阵的每个元素属于[-127,127],例如
0 –2 –7 0 在左下角: 9 2
9 2 –6 2 -4 1
-4 1 –4 1 -1 8
-1 8 0 –2 和为15
几个女孩子有点犯难了,于是就找到了电脑组精打细算的HZH,TZY小朋友帮忙计算,但是遗憾的是他们的答案都不一样,涉及土地的事情我们可不能含糊,你能帮忙计算出校长所给的矩形中加权和最大的矩形吗?
输入输出格式
输入格式:
第一行:n,接下来是n行n列的矩阵。
输出格式:
最大矩形(子矩阵)的和。
输入输出样例
说明
n<=120
这题母题是询问一个序列的最大连续子序列的权值(把sum<0的扳为0,这样就可以重新开始新的一段子序列)
For(i,1,n)sum+=a[i],ans=max(ans,sum),if(sum<0)sum=0;
对于这题的话,会上面的就很简单了,二维压一维,s[i][j]代表第i行,0~j列的和
#include <bits/stdc++.h> using namespace std; typedef long long ll; #define inf 2147483647 const ll INF = 0x3f3f3f3f3f3f3f3fll; #define ri register int template <class T> inline T min(T a, T b, T c) { return min(min(a, b), c); } template <class T> inline T max(T a, T b, T c) { return max(max(a, b), c); } template <class T> inline T min(T a, T b, T c, T d) { return min(min(a, b), min(c, d)); } template <class T> inline T max(T a, T b, T c, T d) { return max(max(a, b), max(c, d)); } #define scanf1(x) scanf("%d", &x) #define scanf2(x, y) scanf("%d%d", &x, &y) #define scanf3(x, y, z) scanf("%d%d%d", &x, &y, &z) #define scanf4(x, y, z, X) scanf("%d%d%d%d", &x, &y, &z, &X) #define pi acos(-1) #define me(x, y) memset(x, y, sizeof(x)); #define For(i, a, b) for (int i = a; i <= b; i++) #define FFor(i, a, b) for (int i = a; i >= b; i--) #define bug printf("***********\n"); #define mp make_pair #define pb push_back const int maxn = 2e5 + 10; // name******************************* int s[130][130]; int ans=0; int n; int x; // function****************************** //*************************************** int main() { // ios::sync_with_stdio(0); // cin.tie(0); // freopen("test.txt", "r", stdin); // freopen("outout.txt","w",stdout); cin>>n; For(i,1,n) { For(j,1,n) { cin>>x; s[i][j]=s[i][j-1]+x; } } //i,j定(列的序号) For(i,1,n) { For(j,i,n) { int sum=0; //k定走的行数 For(k,1,n) { sum+=s[k][j]-s[k][i-1]; ans=max(ans,sum); if(sum<0)sum=0; } } } cout<<ans; return 0; }