P1757 通天之分组背包
题目描述
自01背包问世之后,小A对此深感兴趣。一天,小A去远游,却发现他的背包不同于01背包,他的物品大致可分为k组,每组中的物品相互冲突,现在,他想知道最大的利用价值是多少。
输入输出格式
输入格式:
两个数m,n,表示一共有n件物品,总重量为m
接下来n行,每行3个数ai,bi,ci,表示物品的重量,利用价值,所属组数
输出格式:
一个数,最大的利用价值
输入输出样例
说明
1<=m<=1000 1<=n<=1000 组数t<=100
// 去吧!皮卡丘! 把AC带回来! // へ /| // /\7 ∠_/ // / │ / / // │ Z _,< / /`ヽ // │ ヽ / 〉 // Y ` / / // イ● 、 ● ⊂⊃〈 / // () へ | \〈 // >ー 、_ ィ │ // // / へ / ノ<| \\ // ヽ_ノ (_/ │// // 7 |/ // >―r ̄ ̄`ー―_ //************************************** #pragma comment(linker, "/STACK:1024000000,1024000000") #include <bits/stdc++.h> using namespace std; typedef long long ll; #define inf 2147483647 const ll INF = 0x3f3f3f3f3f3f3f3fll; #define ri register int template <class T> inline T min(T a, T b, T c) { return min(min(a, b), c); } template <class T> inline T max(T a, T b, T c) { return max(max(a, b), c); } template <class T> inline T min(T a, T b, T c, T d) { return min(min(a, b), min(c, d)); } template <class T> inline T max(T a, T b, T c, T d) { return max(max(a, b), max(c, d)); } #define scanf1(x) scanf("%d", &x) #define scanf2(x, y) scanf("%d%d", &x, &y) #define scanf3(x, y, z) scanf("%d%d%d", &x, &y, &z) #define scanf4(x, y, z, X) scanf("%d%d%d%d", &x, &y, &z, &X) #define pi acos(-1) #define me(x, y) memset(x, y, sizeof(x)); #define For(i, a, b) for (int i = a; i <= b; i++) #define FFor(i, a, b) for (int i = a; i >= b; i--) #define bug printf("***********\n"); #define mp make_pair #define pb push_back const int maxn = 3e5 + 10; const int maxx = 1e6 + 10; // name******************************* int n, m; int w[1005], v[1005]; int num[105][1005]; int ans = 0; int dp[1005]; int x; int T = 0; // function****************************** //*************************************** int main() { // ios::sync_with_stdio(0); cin.tie(0); // freopen("test.txt", "r", stdin); // freopen("outout.txt","w",stdout); cin >> m >> n; For(i, 1, n) { cin >> w[i] >> v[i] >> x; T = max(T, x); num[x][++num[x][0]] = i; //num[i][j]数组用来定位,0号位存个数,很厉害的操作学习一下 } For(i, 1, T) { FFor(j, m, 0) { //逆序 For(k, 1, num[i][0]) { if (j - w[num[i][k]] >= 0) dp[j] = max(dp[j], dp[j - w[num[i][k]]] + v[num[i][k]]); } } } cout << dp[m]; return 0; }