P1446 [HNOI2008]Cards
题目描述
小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.
进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绿色.他又询问有多少种方案,Sun想了一下,又给出了正确答案. 最后小春发明了M种不同的洗牌法,这里他又问Sun有多少种不同的染色方案.两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即可以使用多种洗牌法,而每种方法可以使用多次)洗成另一种.
Sun发现这个问题有点难度,决定交给你,答案可能很大,只要求出答案除以P的余数(P为质数).
输入输出格式
输入格式:
第一行输入 5 个整数:Sr,Sb,Sg,m,p(m<=60,m+1<p<100)。n=Sr+Sb+Sg。接下来 m 行,每行描述一种洗牌法,每行有 n 个用空格隔开的整数 X1X2...Xn,恰为 1 到 n 的一个排列,表示使用这种洗牌法,第 i位变为原来的 Xi位的牌。输入数据保证任意多次洗牌都可用这 m种洗牌法中的一种代替,且对每种
洗牌法,都存在一种洗牌法使得能回到原状态。
100%数据满足 Max{Sr,Sb,Sg}<=20。
输出格式:
不同染法除以P的余数
输入输出样例
说明
有2 种本质上不同的染色法RGB 和RBG,使用洗牌法231 一次可得GBR 和BGR,使用洗牌法312 一次 可得BRG 和GRB。
分析:
先学习下几个引理
burnside引理
http://blog.csdn.net/liangzhaoyang1/article/details/72639208
逆元
https://www.cnblogs.com/linyujun/p/5194184.html
参考了大神博客
http://tgotp.science/
思路:套用burnside引理,这题因为对颜色有限制 不能用 polya ,用动归求出对于一个置换的不动方案数 ;
dp的一些解释:dp[i][j][k]表示前i个循环, 用了1号颜色j个 2号颜色k个的方案数
num[n]表示该洗牌法下的循环节个数;
最后根据burnside引理:
不同的方案数:I=(C(a1)+C(a2)+...C(ag))/G
这题的情况是需要除以m
但是过程中我们都进行的%p
且(a / b) % p = (a%p / b%p) %p 是错误的,所以我们要用到逆元(这题因为p是质数,用费马小定理就行)
(a / b) % p = (a * inv(b) ) % p = (a % p * inv(b) % p) % p
费马小定理
a^(p-1) ≡1 (mod p)
所以 inv(a) = a^(p-2) (mod p)
// 去吧!皮卡丘! 把AC带回来! // へ /| // /\7 ∠_/ // / │ / / // │ Z _,< / /`ヽ // │ ヽ / 〉 // Y ` / / // イ● 、 ● ⊂⊃〈 / // () へ | \〈 // >ー 、_ ィ │ // // / へ / ノ<| \\ // ヽ_ノ (_/ │// // 7 |/ // >―r ̄ ̄`ー―_ //************************************** #pragma comment(linker, "/STACK:1024000000,1024000000") #include <bits/stdc++.h> using namespace std; typedef long long ll; #define inf 2147483647 const ll INF = 0x3f3f3f3f3f3f3f3fll; #define ri register int template <class T> inline T min(T a, T b, T c) { return min(min(a, b), c); } template <class T> inline T max(T a, T b, T c) { return max(max(a, b), c); } template <class T> inline T min(T a, T b, T c, T d) { return min(min(a, b), min(c, d)); } template <class T> inline T max(T a, T b, T c, T d) { return max(max(a, b), max(c, d)); } #define scanf1(x) scanf("%d", &x) #define scanf2(x, y) scanf("%d%d", &x, &y) #define scanf3(x, y, z) scanf("%d%d%d", &x, &y, &z) #define scanf4(x, y, z, X) scanf("%d%d%d%d", &x, &y, &z, &X) #define pi acos(-1) #define me(x, y) memset(x, y, sizeof(x)); #define For(i, a, b) for (int i = a; i <= b; i++) #define FFor(i, a, b) for (int i = a; i >= b; i--) #define bug printf("***********\n"); #define mp make_pair #define pb push_back const int maxn = 3e5 + 10; const int maxx = 1e6 + 10; // name******************************* int dp[80][30][30]; int a[80]; bool flag[80]; int num[80]; int s1, s2, s3, m, mod; int tot; int ans = 0; int sum[80]; // function****************************** inline ll qmul(ll a, ll b) { ll base = a, ans = 1; while (b) { if (b & 1ll) ans = (ans * base) % mod; base = (base * base) % mod; b >>= 1ll; } return ans; } //*************************************** int main() { // ios::sync_with_stdio(0); cin.tie(0); // freopen("test.txt", "r", stdin); // freopen("outout.txt","w",stdout); cin >> s1 >> s2 >> s3 >> m >> mod; m++; tot = s1 + s2 + s3; For(t, 1, m) { if (t == m) For(i, 1, tot) a[i] = i; else For(i, 1, tot) cin >> a[i]; memset(flag, 0, sizeof(flag)); memset(num, 0, sizeof(num)); memset(sum, 0, sizeof(sum)); int n = 0; For(j, 1, tot) { if (!flag[j]) { int cnt = 0; int p = j; while (!flag[p]) { flag[p] = 1; cnt++; p = a[p]; } num[++n] = cnt; sum[n] = sum[n - 1] + cnt; } } dp[0][0][0] = 1; For(i, 1, n) { For(j, 0, s1) { For(k, 0, s2) { int l = sum[i] - j - k; //? if (l < 0 || l > s3) continue; int sum = 0; if (j >= num[i]) sum = (sum + dp[i - 1][j - num[i]][k]) % mod; if (k >= num[i]) sum = (sum + dp[i - 1][j][k - num[i]]) % mod; if (l >= num[i]) sum = (sum + dp[i - 1][j][k]) % mod; dp[i][j][k] = sum; if (i == n) ans = (ans + dp[i][j][k]) % mod; } } } } int x = ans * qmul(m, mod - 2) % mod; cout << x; return 0; }