[NOIp2009] HanksonHanksonの趣味题
2333323333这是最近第二份在时间上吊打yjkyjk的代码……啊哈哈哈哈哈哈哈
嗯,其实遇到这种单纯的gcd or lcmgcd or lcm的题,我们都可以用一种比较简单的方法分析:唯一分解定理。
嗯,是整数域的唯一分解,不是多项式域的唯一分解(23332333中了群环域的毒)
那么其实很显然,关于这种解法,大部分来讲都是先筛出数据范围上限√n√n即可。但是有个BugBug就是对于每个合数kk,都最多有一个质因子是大于√k√k的由于数据范围过大窝萌没法直接筛,而我正是解决了这个问题(虽然有点慢233233).
我们思考对于a0a0和a1a1而言,假设gcd(x,a0)=a1gcd(x,a0)=a1
那么我们会有比较浅显的结论:若$$a_0=\prod\limits_{i=1}{m}p_i,x=\prod\limits_{i=1}{n}p_i那么a_1=\prod\limits_{i=1}{max(m,n)}p_i$$那我们反着考虑,对于他们的gcd——a1里的pi来讲,要么是a0中的,要么是x中的。换句话说,如果ci=min(ci,di),那么di只需要≥ ci即可,也就是说di可以在区间[ci,∞)上随便取,我们现在称这个x为自由未知数(free uknown−number),称这个区间为自由区间(free ranges)。
而如果不一样,就只可能是ci>min(di,ci),此时没有任何取法,只有可能是di=min(di,ci),所以就只能有一种选法,我们现在称这个x为非自由未知数(unfree uknown−number)。
同理,lcm那部分也一样。emmm只不过由左闭右开变成右闭左开区间而已2333
但是这个地方需要注意的是,我们需要考虑22种不同情况:
1、两个方程的x均非自由,那么如果不同的话就会无解。
2&3、gcd或者lcm中有一个非自由,我们需要判断这个非自由的解是否是在另一个的自由区间内,不在就是不合法。
4、都是自由的,那么就做个差留到最后乘法原理。
代码大概长这样:
inline void Linearity(){
T = qr() ;
Chk[1] = Chk[0] = 1 ;
for (i = 2 ; i <= MAX ; ++ i){
if (!Chk[i]) P[++ P[0]] = i ;
for (j = 1; j <= P[0] && i * P[j] <= MAX ; ++ j){
Chk[i * P[j]] = 1 ;
if (i % P[j] == 0) break ;
}
}
}
inline void work(int ST, int ED){
for(i = ST; i <= ED ; ++ i){
N1 = N2 = N3 = N4 = 0 ;
while (!(A0 % P[i])) A0 /= P[i], ++ N1 ;
while (!(A1 % P[i])) A1 /= P[i], ++ N2 ;
while (!(B0 % P[i])) B0 /= P[i], ++ N3 ;
while (!(B1 % P[i])) B1 /= P[i], ++ N4 ;
if (N1 > N2 && N3 < N4){
if (N2 == N4) A[i] = B[i] = 1 ;
else {mark = 0; break ;}
continue ;
}
if (N1 > N2){
if (N4 >= N2) A[i] = B[i] = N2 ;
else {mark = 0; break ;}
continue ;
}
if (N3 < N4){
if (N4 >= N2) A[i] = B[i] = N3 ;
else {mark = 0; break ;}
continue ;
}
else {
if (N4 >= N2) A[i] = N2, B[i] = N4 ;
else {mark = 0; break ;}
}
}
}
那么接下来的问题就是该怎么确定最后一个质因子。有一个很显然的做法是由于是最后一个质因子,所以我们只需要判断一下分解完质因数每一个是不是1即可,不是1的话,那就肯定是未筛到的,我们直接让他加入prime数组即可。哦,对,还需要再筛一遍,详情看代码即可。
#include <cstdio>
#include <bitset>
#include <iostream>
#define MAX 45000
#define ll long long
using namespace std ;
bitset <MAX> Chk ; int A0, A1, B0, B1 ;
int Ans, T, i, j, P[MAX >> 2] ; bool mark ;
int N1, N2, N3, N4, A[MAX >> 2], B[MAX >> 2], Txt ;
inline int qr(){
int k = 0 ; char c = getchar() ;
while(!isdigit(c)) c = getchar() ;
while(isdigit(c)) k = (k << 1) + (k << 3) + c - 48, c = getchar() ;
return k ;
}
inline void Linearity(){
T = qr() ;
Chk[1] = Chk[0] = 1 ;
for (i = 2 ; i <= MAX ; ++ i){
if (!Chk[i]) P[++ P[0]] = i ;
for (j = 1; j <= P[0] && i * P[j] <= MAX ; ++ j){
Chk[i * P[j]] = 1 ;
if (i % P[j] == 0) break ;
}
}
}
inline void work(int ST, int ED){
for(i = ST; i <= ED ; ++ i){
N1 = N2 = N3 = N4 = 0 ;
while (!(A0 % P[i])) A0 /= P[i], ++ N1 ;
while (!(A1 % P[i])) A1 /= P[i], ++ N2 ;
while (!(B0 % P[i])) B0 /= P[i], ++ N3 ;
while (!(B1 % P[i])) B1 /= P[i], ++ N4 ;
if (N1 > N2 && N3 < N4){
if (N2 == N4) A[i] = B[i] = 1 ;
else {mark = 0; break ;}
continue ;
}
if (N1 > N2){
if (N4 >= N2) A[i] = B[i] = N2 ;
else {mark = 0; break ;}
continue ;
}
if (N3 < N4){
if (N4 >= N2) A[i] = B[i] = N3 ;
else {mark = 0; break ;}
continue ;
}
else {
if (N4 >= N2) A[i] = N2, B[i] = N4 ;
else {mark = 0; break ;}
}
}
}
int main(){
freopen("son.in", "r", stdin) ;
freopen("son.out", "w", stdout) ;
Linearity() ;
while(T --){
Ans = 1, mark = 1 ;
A0 = qr(), A1 = qr(), B0 = qr(), B1 = qr() ;
work(1, P[0]) ;
if (A0 != 1 || A1 != 1 || B0 != 1 || B1 != 1){
Txt = P[0] + 1 ;
if (B1 != 1) P[++ P[0]] = B1 ;
if (A1 != 1 && A1 != B1) P[++ P[0]] = A1 ;
if (A0 != 1 && A0 != B1 && A0 != A1) P[++ P[0]] = A0 ;
if (B0 != 1 && B0 != B1 && B0 != A1 && B0 != A0) P[++ P[0]] = B0 ;
work(Txt, P[0]) ;
}
for(i = 1; i <= P[0] && mark ; ++ i) Ans *= (B[i] - A[i] + 1) ;
if (!mark) putchar('0'), putchar('\n') ;
else printf("%d\n", Ans) ;
}
}
最后还有彩蛋哦:
1、这个题中的关键代码,就是work函数是在我事先考虑清楚,事中如同做梦,事后不可思议的情况下写出来的……也就是说当时写代码的时候码力突然增强了一个量级2333
2、关于什么自由不自由的定义……哈哈哈哈那只是我的突发奇想而已不是故意哲学!不是!但是你会发现以下的文字阐述确实会简练好多啊
3、其实你如果去不找另一个比较大的质数,也是可以得90分的!从loj的数据来看,前面的测试点一路顺风,只有最后一个测试点是专门卡这一点的,因为出现了好多行答案不相同的情况2333
4、其实我觉得我最后的操作是跟AlphaGo动态学习处理信息有点异曲同工之处的,哈哈哈得瑟了好久顿时觉得自己很google(奇怪的形容词?)。
5、很迷??为什么我就始终卡不进200ms?woc复杂度明明还可以啊2333
【推荐】还在用 ECharts 开发大屏?试试这款永久免费的开源 BI 工具!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 软件产品开发中常见的10个问题及处理方法
· .NET 原生驾驭 AI 新基建实战系列:向量数据库的应用与畅想
· 从问题排查到源码分析:ActiveMQ消费端频繁日志刷屏的秘密
· 一次Java后端服务间歇性响应慢的问题排查记录
· dotnet 源代码生成器分析器入门
· ThreeJs-16智慧城市项目(重磅以及未来发展ai)
· .NET 原生驾驭 AI 新基建实战系列(一):向量数据库的应用与畅想
· Browser-use 详细介绍&使用文档
· 软件产品开发中常见的10个问题及处理方法
· Vite CVE-2025-30208 安全漏洞