[探究] dsu on tree,一类树上离线问题的做法
dsu on tree.
前言技术分析
,中文别称“树上启发式合并”(虽然我并不承认这种称谓),大概是一种优雅的暴力,并且跟毫无关系。于是我打算叫他,“优雅的树上暴力统计”。
严格来说,解决的问题范围并不广泛:
1、维护子树信息;
2、不能带修改操作。
但这仍然掩盖不住这种算法自带的有趣的气质。笔者认为,这种算法虽然是个暴力,但是其中的技术含量还是不低的,代码也不是那么的浅显易懂,算是一个比较考察应用能力的算法。
然后来看技术分析。
首先,假设我们有这样一个问题:
给定一棵有根树树,每个点有一个信息。现在考虑求出每个点子树内的规定的有效信息数量。
一般而言这样的题是可以上莫队的,但是便于展开就开到了。
考虑的暴力,即对每个节点都扫一遍子树。很容易发现这样是浪费的,因为会算重。我们考虑怎么对这棵树进行划分才能高效计算。
考虑一种合适的划分方案。结合轻重链剖里面的结论,可以知道,在轻重链剖后,一个点到根不会超过条轻边。所以如果对于每个点,假设我们只计算他对轻祖先的贡献,需要至多次就可以解决;同时我们考虑重儿子,每个点至多会被当成一次重儿子,所以假设我们只计算他对父亲的贡献,那么至多次就可以解决。所以最后的复杂度是的。
现在考虑实现层面,其实是一种分治的思想。我们考虑首先分治的轻儿子并清除轻儿子的贡献,然后暴力计算重儿子,然后暴力计算一整棵子树的贡献。首先第一步中清除贡献是必要的,因为分治出来的几个子问题相互独立,所以必须要独立计算。之后是重儿子,由于重儿子至多有一个,所以可以直接计算而不会影响其他状态。最终再暴力一遍计算轻儿子的贡献。
所以这样就解决了维护树上信息的问题,复杂度。
入门题目选整
感觉大部分blog
找的题目都很不清真233
Lomsat gelral
一句话题意/
一棵树有n个结点,每个结点都是一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号的和。
考虑套的板子:
void dfs(int u, int fa){
sz[u] = 1 ;
for (int k = head[u] ; k ; k = E[k].next){
if (to(k) == fa) continue ;
dfs(to(k), u), sz[u] += sz[to(k)] ;
if (sz[to(k)] > sz[son[u]]) son[u] = to(k) ;
}
}
void dfs(int u, int fa, int mk){
for (int k = head[u] ; k ; k = E[k].next){
if (to(k) == fa || to(k) == son[u]) continue ;
dfs(to(k), u, 0) ;
}
if (son[u]) dfs(son[u], u, 1), vis[son[u]] = 1 ;
calc(u, fa, 1) ; ans[u] = res ; if (son[u]) vis[son[u]] = 0 ;
if (!mk) calc(u, fa, -1), res = 0, max_cnt = 0 ;
}
然后就是最后的calc
函数怎么写了。考虑我们最暴力的做法是什么?就是把每个颜色统计一遍。所以这么写就OK了:
void calc(int u, int fa, int mk){
buc[clr[u]] += mk ;
if (mk > 0 && buc[clr[u]] >= max_cnt){
if (buc[clr[u]] > max_cnt)
res = 0, max_cnt = 1ll * buc[clr[u]] ;
res += 1ll * clr[u] ;
}
for (int k = head[u] ; k ; k = E[k].next){
if (to(k) == fa || vis[to(k)]) continue ;
calc(to(k), u, mk) ;
}
}
Tree Requests
一句话题意:
给定一个以1为根的n个节点的树,每个点上有一个字母,每个点的深度定义为该节点到1号节点路径上的点数.每次询问查询以为根的子树内深度为的节点上的字母重新排列之后是否能构成回文串.
这种应该就是比较裸的。有一步转化需要学会构造,即我们令一个字符的权值,那么对与一个串,我们令,那么重排之后可以构成回文串 ,其中指集合内的元素个数,也就是二进制表示中的个数。所以也是,直接爆算就可以了。
void calc(int u, int fa){
buc[dep[u]] ^= (1 << base[u]) ;
for (int k = head[u] ; k ; k = E[k].next)
if (to(k) != fa && !vis[to(k)]) calc(to(k), u) ;
}
int getl(int x){
int ret = 0 ;
while (x) ret += (x & 1), x >>= 1 ;
return (bool)(ret <= 1) ;
}
void del(int u, int fa){
buc[dep[u]] = 0 ;
for (int k = head[u] ; k ; k = E[k].next)
if (to(k) != fa && !vis[to(k)]) del(to(k), u) ;
}
void dfs(int u, int fa, int mk){
for (int k = head[u] ; k ; k = E[k].next)
if (to(k) != fa && to(k) != son[u]) dfs(to(k), u, 0) ;
if (son[u]) dfs(son[u], u, 1), vis[son[u]] = 1 ;
calc(u, fa) ;
for (int k = 0 ; k < qs[u].size() ; ++ k)
ans[u].pb(getl(buc[qs[u][k]])) ;
vis[son[u]] = 0 ; if (!mk) del(u, fa) ;
}
哦,漏说一点,这题需要边查询边记录询问的答案,所以需要把询问离线起来一起飞(?)。
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 如何打造一个高并发系统?
· .NET Core GC压缩(compact_phase)底层原理浅谈
· 现代计算机视觉入门之:什么是图片特征编码
· .NET 9 new features-C#13新的锁类型和语义
· Linux系统下SQL Server数据库镜像配置全流程详解
· Sdcb Chats 技术博客:数据库 ID 选型的曲折之路 - 从 Guid 到自增 ID,再到
· 语音处理 开源项目 EchoSharp
· 《HelloGitHub》第 106 期
· mysql8.0无备份通过idb文件恢复数据过程、idb文件修复和tablespace id不一致处
· 使用 Dify + LLM 构建精确任务处理应用