Logistic/Softmax Regression
辅助函数
牛顿法介绍
1 %% Logistic Regression 2 close all 3 clear 4 5 %%load data 6 x = load('ex4x.dat'); 7 y = load('ex4y.dat'); 8 9 [m, n] = size(x); 10 11 % Add intercept term to x 12 x = [ones(m, 1), x]; 13 14 %%draw picture 15 % find returns the indices of the 16 % rows meeting the specified condition 17 pos = find(y == 1); 18 neg = find(y == 0); 19 % Assume the features are in the 2nd and 3rd 20 % columns of x 21 figure('NumberTitle', 'off', 'Name', 'GD'); 22 plot(x(pos, 2), x(pos,3), '+'); 23 hold on; 24 plot(x(neg, 2), x(neg, 3), 'o'); 25 26 % Define the sigmoid function 27 g = inline('1 ./ (1 + exp(-z))'); 28 29 alpha = 0.001; 30 theta = [-10,1,1]'; 31 obj_old = 1e10; 32 tor = 1e-4; 33 34 tic 35 36 %%Gradient Descent 37 for time = 1:1000 38 delta = zeros(3,1); 39 objective = 0; 40 41 for i = 1:80 42 z = x(i,:) * theta; 43 h = g(z);%转换成logistic函数 44 delta = (1/m) .* x(i,:)' * (y(i)-h) + delta; 45 objective = (1/m) .*( -y(i) * log(h) - (1-y(i)) * log(1-h)) + objective; 46 end 47 theta = theta + alpha * delta; 48 49 fprintf('objective is %.4f\n', objective); 50 if abs(obj_old - objective) < tor 51 fprintf('torlerance is samller than %.4f\n', tor); 52 break; 53 end 54 obj_old = objective; 55 end 56 57 %%Calculate the decision boundary line 58 plot_x = [min(x(:,2)), max(x(:,2))]; 59 plot_y = (-1./theta(3)).*(theta(2).*plot_x +theta(1)); 60 plot(plot_x, plot_y) 61 legend('Admitted', 'Not admitted', 'Decision Boundary') 62 hold off 63 toc 64 pause(5); 65 %%SGD 66 67 figure('NumberTitle', 'off', 'Name', 'SGD'); 68 plot(x(pos, 2), x(pos,3), '+'); 69 hold on; 70 plot(x(neg, 2), x(neg, 3), 'o'); 71 72 alpha = 0.001; 73 theta = [-10,1,1]'; 74 obj_old = 1e10; 75 tor = 1e-4; 76 k=10; 77 U=ceil(m/k); 78 79 for time = 1:10000 80 delta = zeros(3,1); 81 rand('twister',time*4); 82 idx=randperm(m); 83 objective = 0; 84 85 subidx=idx(1:k); 86 for i=1:length(subidx) 87 z = x(subidx(i),:) * theta; 88 h = g(z);%转换成logistic函数 89 delta = (1/k) .* x(subidx(i),:)' * (y(subidx(i))-h) + delta; 90 objective = (1/k) .*( -y(subidx(i)) * log(h) - (1-y(subidx(i))) * log(1-h)) + objective; 91 end 92 theta = theta + alpha * delta; 93 94 fprintf('objective is %.4f\n', objective); 95 if abs(obj_old - objective) < tor 96 fprintf('torlerance is samller than %.4f\n', tor); 97 break; 98 end 99 obj_old = objective; 100 end 101 102 %%Calculate the decision boundary line 103 plot_x = [min(x(:,2)), max(x(:,2))]; 104 plot_y = (-1./theta(3)).*(theta(2).*plot_x +theta(1)); 105 plot(plot_x, plot_y) 106 legend('Admitted', 'Not admitted', 'Decision Boundary') 107 hold off 108 toc 109 pause(5) 110 111 %%Newton's method 112 113 figure('NumberTitle', 'off', 'Name', 'Newton'); 114 plot(x(pos, 2), x(pos,3), '+'); 115 hold on; 116 plot(x(neg, 2), x(neg, 3), 'o'); 117 118 alpha = 0.001; 119 theta = zeros(3, 1); 120 obj_old = 1e10; 121 tor = 1e-4; 122 123 for i = 1:100 124 delta = zeros(3,1); 125 delta_H = zeros(3,3); 126 objective = 0; 127 % Calculate the hypothesis function 128 for i = 1:80 129 z = x(i,:) * theta; 130 h = g(z);%转换成logistic函数 131 delta = (1/m) .* x(i,:)' * (h-y(i)) + delta; 132 delta_H = (1/m).* x(i,:)' * h * (1-h) * x(i,:) + delta_H; 133 objective = (1/m) .*( -y(i) * log(h) - (1-y(i)) * log(1-h)) + objective; 134 end 135 theta = theta - delta_H\delta; 136 fprintf('objective is %.4f\n', objective); 137 if abs(obj_old - objective) < tor 138 fprintf('torlerance is samller than %.4f\n', tor); 139 break; 140 end 141 obj_old = objective; 142 end 143 144 %%Calculate the decision boundary line 145 plot_x = [min(x(:,2)), max(x(:,2))]; 146 plot_y = (-1./theta(3)).*(theta(2).*plot_x +theta(1)); 147 plot(plot_x, plot_y) 148 legend('Admitted', 'Not admitted', 'Decision Boundary') 149 hold off 150 toc
1 %% Softmax Regression 2 close all 3 clear 4 5 %%load data 6 load('my_ex4x.mat'); 7 load('my_ex4y.mat'); 8 9 [m, n] = size(x); 10 11 % Add intercept term to x 12 x = [ones(m, 1), x]; 13 y = y + 1; 14 15 class_num = max(y); 16 n = n + 1; 17 18 %%draw picture 19 % find returns the indices of the 20 % rows meeting the specified condition 21 class2 = find(y == 2); 22 class1 = find(y == 1); 23 class3 = find(y == 3); 24 % Assume the features are in the 2nd and 3rd 25 % columns of x 26 figure('NumberTitle', 'off', 'Name', 'GD'); 27 plot(x(class2, 2), x(class2,3), '+'); 28 hold on; 29 plot(x(class1, 2), x(class1, 3), 'o'); 30 hold on; 31 plot(x(class3, 2), x(class3, 3), '*'); 32 hold on; 33 34 35 % Define the sigmoid function 36 g = inline('exp(z) ./ sumz','z','sumz'); 37 38 alpha = 0.0001; 39 theta = [-16,0.15,0.14;-10,1,-1]'; 40 obj_old = 1e10; 41 tor = 1e-4; 42 43 %%Gradient Descent 44 for time = 1:1000 45 delta = zeros(3,1); 46 objective = 0; 47 48 for i = 1:120 49 for j = 1:2 50 z = x(i,:) * theta(:,j); 51 sumz = exp(x(i,:) * theta(:,1)) + exp(x(i,:) * theta(:,2)) + 1; 52 h = g(z,sumz);%转换成logistic函数 53 if y(i)==j 54 delta = (1/m) .* x(i,:)' * (1-h); 55 theta(:,j) = theta(:,j) + alpha * delta; 56 objective = (1/m) .*(-y(i) * log(h)) + objective; 57 else 58 delta = (1/m) .* x(i,:)' * (-h); 59 theta(:,j) = theta(:,j) + alpha * delta; 60 objective = (1/m) .*(-(1-y(i)) * log(1-h)) + objective; 61 end 62 end 63 end 64 65 fprintf('objective is %.4f\n', objective); 66 if abs(obj_old - objective) < tor 67 fprintf('torlerance is samller than %.4f\n', tor); 68 break; 69 end 70 obj_old = objective; 71 end 72 73 %%Calculate the decision boundary line 74 plot_x = [min(x(:,2)), max(x(:,2))]; 75 plot_y = (-1./theta(3,1)).*(theta(2,1).*plot_x +theta(1,1)); 76 plot(plot_x, plot_y) 77 legend('Admitted', 'Not admitted', 'Decision Boundary') 78 hold on 79 80 plot_y = (-1./theta(3,2)).*(theta(2,2).*plot_x +theta(1,2)); 81 plot(plot_x, plot_y) 82 legend('Admitted', 'Not admitted', 'Decision Boundary') 83 hold off