吴恩达《深度学习》第二课第一周编程作业

参考链接:https://blog.csdn.net/u013733326/article/details/79847918

与原博文不同,我直接改动了第一课第四周的作业代码,只测试了L2正则化和随机初始化的效果。L2正则化可以明显的缓解过度拟合的情况

代码:

# coding=utf-8
# This is a sample Python script.

# Press ⌃R to execute it or replace it with your code.
# Press Double ⇧ to search everywhere for classes, files, tool windows, actions, and settings.


import numpy as np
import matplotlib.pyplot as plt
import sklearn
import sklearn.datasets
import init_utils   #第一部分,初始化
import reg_utils    #第二部分,正则化
import gc_utils     #第三部分,梯度校验
from dnn_utils import sigmoid, sigmoid_backward, relu, relu_backward
np.random.seed(3)
lambd = 0.75
#%matplotlib inline #如果你使用的是Jupyter Notebook,请取消注释。

def init(layers_dims):
    parameters = {}
    L = len(layers_dims)
    for l in range(1, L):
        # print("l:", l)
        parameters["W" + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1]) / np.sqrt(layers_dims[l - 1]) * 2
        parameters["b" + str(l)] = np.zeros((layers_dims[l], 1))
        assert parameters["W" + str(l)].shape == (layers_dims[l], layers_dims[l - 1])
        assert parameters["b" + str(l)].shape == (layers_dims[l], 1)

    return parameters

def linear_forward(A, W, b):
    Z = np.dot(W, A) + b
    assert Z.shape == (W.shape[0], A.shape[1])
    cache = (A, W, b)

    return Z, cache


def liner_activation_forward(A_pre, W, b, activation):
    if activation == "sigmoid":
        Z, linear_cache = linear_forward(A_pre, W, b)
        A, activation_cache = sigmoid(Z)
    elif activation == "relu":
        Z, linear_cache = linear_forward(A_pre, W, b)
        A, activation_cache = relu(Z)
    assert A.shape == (W.shape[0], A_pre.shape[1])
    cache = (linear_cache, activation_cache)
    return A, cache



def l_model_forward(X, parameters):
    caches = []
    A = X
    L = len(parameters) // 2
    for l in range(1, L):
        A_prev = A
        A, cache = liner_activation_forward(A_prev, parameters["W" + str(l)], parameters["b" + str(l)],
                                            activation="relu")
        caches.append(cache)

    AL, cache = liner_activation_forward(A, parameters["W" + str(L)], parameters["b" + str(L)],
                                         activation="sigmoid")
    caches.append(cache)

    assert AL.shape == (1, X.shape[1])

    return AL, caches


def cal_cost(AL, Y, parameters):
    m = Y.shape[1]
    L = len(parameters) // 2
    cost = -np.sum(np.multiply(Y, np.log(AL)) + np.multiply(1 - Y,  np.log(1 - AL))) / m
    cost = np.squeeze(cost)
    tmp = 0
    for i in range(L):
        tmp = tmp + np.sum(np.square(parameters["W" + str(i + 1)]))
    cost = cost + tmp / (2 * m)
    assert cost.shape == ()

    return cost


# Press the green button in the gutter to run the script.

def liner_backward(dZ, cache):
    A_prev, W, b = cache
    m = A_prev.shape[1]
    dW = np.dot(dZ, A_prev.T) / m + ((lambd * W) / m)
    dB = np.sum(dZ, axis=1, keepdims=True) / m
    dA_prev = np.dot(W.T, dZ)

    assert dA_prev.shape == A_prev.shape
    assert dW.shape == W.shape
    assert dB.shape == b.shape

    return dA_prev, dW, dB


def liner_activation_backward(dA, cache, activation):
    liner_cache, activation_cache = cache
    if activation == "relu":
        dZ = relu_backward(dA, activation_cache)
        dA_prev, dW, db = liner_backward(dZ, liner_cache)
    elif activation == "sigmoid":
        dZ = sigmoid_backward(dA, activation_cache)
        dA_prev, dW, db = liner_backward(dZ, liner_cache)
    return dA_prev, dW, db

def L_model_backward(AL, Y, caches):
    grads = {}
    L = len(caches)
    m = AL.shape[1]
    Y = Y.reshape(AL.shape)
    dAL = -(np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))

    current_cache = caches[L - 1]
    grads["dA" + str(L)], grads["dW" + str(L)], grads["db" + str(L)] = liner_activation_backward(dAL, current_cache,
                                                                                                 "sigmoid")
    for l in reversed((range(L - 1))):
        current_cache = caches[l]
        dA_prev_tmp, dW_tmp, db_tmp = liner_activation_backward(grads["dA" + str(l + 2)], current_cache, "relu")
        grads["dA" + str(l + 1)] = dA_prev_tmp
        grads["dW" + str(l + 1)] = dW_tmp
        grads["db" + str(l + 1)] = db_tmp

    return grads


def update(parameters, grads, learning_rate, m):
    L = len(parameters) // 2
    for l in range(L):
        parameters["W" + str(l + 1)] = parameters["W" + str(l + 1)] - learning_rate * grads["dW" + str(l + 1)]
        parameters["b" + str(l + 1)] = parameters["b" + str(l + 1)] - learning_rate * grads["db" + str(l + 1)]
    return parameters


def predict(X,  parameters):
    m = X.shape[1]
    n = len(parameters) // 2  # 神经网络的层数
    p = np.zeros((1, m))

    # 根据参数前向传播
    probas, caches = l_model_forward(X, parameters)
    p = (probas > 0.5)
    # for i in range(0, probas.shape[1]):
    #     if probas[0, i] > 0.5:
    #         p[0, i] = 1
    #     else:
    #         p[0, i] = 0
    #
    # print("准确度为: " + str(float(np.sum((p == y)) / m)))

    return p


def predicts(X,  y, parameters):
    m = X.shape[1]
    n = len(parameters) // 2  # 神经网络的层数
    p = np.zeros((1, m))

    # 根据参数前向传播
    probas, caches = l_model_forward(X, parameters)
    p = (probas > 0.5)
    print("准确度为: " + str(float(np.sum((p == y)) / m)))
    return p

def solve(X, Y, layer_dims, learning_rate, num_iterations):
    costs = []
    parameters = init(layer_dims)

    for i in range(0, num_iterations):
        AL, caches = l_model_forward(X, parameters)
        cost = cal_cost(AL, Y, parameters)
        grads = L_model_backward(AL, Y, caches)
        parameters = update(parameters, grads, learning_rate, len(parameters) // 2)
        if i % 100 == 0:
            costs.append(cost)
                # 是否打印成本值
            print("", i, "次迭代,成本值为:", np.squeeze(cost))

    plt.plot(np.squeeze(costs))
    plt.ylabel('cost')
    plt.xlabel('iterations (per tens)')
    plt.title("Learning rate =" + str(learning_rate))
    plt.show()

    return parameters

if __name__ == '__main__':
    train_X, train_Y, test_X, test_Y = reg_utils.load_2D_dataset(is_plot=True)
    # plt.rcParams['figure.figsize'] = (7.0, 4.0)  # set default size of plots
    # plt.rcParams['image.interpolation'] = 'nearest'
    # plt.rcParams['image.cmap'] = 'gray'
    # plt.show()
    # layers_dims = [12288, 20, 7, 5, 1]  # 5-layer model
    layers_dims = [train_X.shape[0], 30, 20, 10, 5, 1]
    parameters = solve(train_X, train_Y, layers_dims, 0.01, num_iterations=25000)
    # predictions_train = predict(train_X, train_Y, parameters)  # 训练集
    # predictions_test = predict(test_X, test_Y, parameters)  # 测试集
    plt.title("Model with Zeros initialization")
    axes = plt.gca()
    axes.set_xlim([-1.5, 1.5])
    axes.set_ylim([-1.5, 1.5])
    # parameters = model(train_X, train_Y, initialization="zeros", is_polt=True)
    init_utils.plot_decision_boundary(lambda x: predict(x.T, parameters), train_X, train_Y)
    predicts(train_X, train_Y, parameters)
    predicts(test_X, test_Y, parameters)

# See PyCharm help at https://www.jetbrains.com/help/pycharm/

 

posted @ 2021-01-19 20:46  维和战艇机  阅读(194)  评论(0编辑  收藏  举报