吴恩达《深度学习》第一课第四周编程作业(多层神经网络)
参考链接:https://blog.csdn.net/u013733326/article/details/79767169
搭建多层神经网络步骤:
1、初始化
2、前向传播
(1)线性部分
(2)激活部分
3、计算代价(判断有没有学习)
4、反向传播
(1)线性部分
(2)激活部分
5、更新参数
6、预测
# coding=utf-8 # This is a sample Python script. # Press ⌃R to execute it or replace it with your code. # Press Double ⇧ to search everywhere for classes, files, tool windows, actions, and settings. import numpy as np import h5py import matplotlib.pyplot as plt import testCases from dnn_utils import sigmoid, sigmoid_backward, relu, relu_backward import lr_utils def init(layers_dims): parameters = {} L = len(layers_dims) for l in range(1, L): # print("l:", l) parameters["W" + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1]) / np.sqrt(layers_dims[l - 1]) parameters["b" + str(l)] = np.zeros((layers_dims[l], 1)) assert parameters["W" + str(l)].shape == (layers_dims[l], layers_dims[l - 1]) assert parameters["b" + str(l)].shape == (layers_dims[l], 1) return parameters def linear_forward(A, W, b): Z = np.dot(W, A) + b assert Z.shape == (W.shape[0], A.shape[1]) cache = (A, W, b) return Z, cache def liner_activation_forward(A_pre, W, b, activation): if activation == "sigmoid": Z, linear_cache = linear_forward(A_pre, W, b) A, activation_cache = sigmoid(Z) elif activation == "relu": Z, linear_cache = linear_forward(A_pre, W, b) A, activation_cache = relu(Z) assert A.shape == (W.shape[0], A_pre.shape[1]) cache = (linear_cache, activation_cache) return A, cache def l_model_forward(X, parameters): caches = [] A = X L = len(parameters) // 2 for l in range(1, L): A_prev = A A, cache = liner_activation_forward(A_prev, parameters["W" + str(l)], parameters["b" + str(l)], activation="relu") caches.append(cache) AL, cache = liner_activation_forward(A, parameters["W" + str(L)], parameters["b" + str(L)], activation="sigmoid") caches.append(cache) assert AL.shape == (1, X.shape[1]) return AL, caches def cal_cost(AL, Y): m = Y.shape[1] cost = -np.sum(np.multiply(Y, np.log(AL)) + np.multiply(1 - Y, np.log(1 - AL))) / m cost = np.squeeze(cost) assert cost.shape == () return cost # Press the green button in the gutter to run the script. def liner_backward(dZ, cache): A_prev, W, b = cache m = A_prev.shape[1] dW = np.dot(dZ, A_prev.T) / m dB = np.sum(dZ, axis=1, keepdims=True) / m dA_prev = np.dot(W.T, dZ) assert dA_prev.shape == A_prev.shape assert dW.shape == W.shape assert dB.shape == b.shape return dA_prev, dW, dB def liner_activation_backward(dA, cache, activation): liner_cache, activation_cache = cache if activation == "relu": dZ = relu_backward(dA, activation_cache) dA_prev, dW, db = liner_backward(dZ, liner_cache) elif activation == "sigmoid": dZ = sigmoid_backward(dA, activation_cache) dA_prev, dW, db = liner_backward(dZ, liner_cache) return dA_prev, dW, db def L_model_backward(AL, Y, caches): grads = {} L = len(caches) m = AL.shape[1] Y = Y.reshape(AL.shape) dAL = -(np.divide(Y, AL) - np.divide(1 - Y, 1 - AL)) current_cache = caches[L - 1] grads["dA" + str(L)], grads["dW" + str(L)], grads["db" + str(L)] = liner_activation_backward(dAL, current_cache, "sigmoid") for l in reversed((range(L - 1))): current_cache = caches[l] dA_prev_tmp, dW_tmp, db_tmp = liner_activation_backward(grads["dA" + str(l + 2)], current_cache, "relu") grads["dA" + str(l + 1)] = dA_prev_tmp grads["dW" + str(l + 1)] = dW_tmp grads["db" + str(l + 1)] = db_tmp return grads def update(parameters, grads, learning_rate): L = len(parameters) // 2 for l in range(L): parameters["W" + str(l + 1)] = parameters["W" + str(l + 1)] - learning_rate * grads["dW" + str(l + 1)] parameters["b" + str(l + 1)] = parameters["b" + str(l + 1)] - learning_rate * grads["db" + str(l + 1)] return parameters def predict(X, y, parameters): m = X.shape[1] n = len(parameters) // 2 # 神经网络的层数 p = np.zeros((1, m)) # 根据参数前向传播 probas, caches = l_model_forward(X, parameters) for i in range(0, probas.shape[1]): if probas[0, i] > 0.5: p[0, i] = 1 else: p[0, i] = 0 print("准确度为: " + str(float(np.sum((p == y)) / m))) return p def solve(X, Y, layer_dims, learning_rate, num_iterations): costs = [] parameters = init(layer_dims) for i in range(0, num_iterations): AL, caches = l_model_forward(X, parameters) cost = cal_cost(AL, Y) grads = L_model_backward(AL, Y, caches) parameters = update(parameters, grads, learning_rate) if i % 100 == 0: costs.append(cost) # 是否打印成本值 print("第", i, "次迭代,成本值为:", np.squeeze(cost)) plt.plot(np.squeeze(costs)) plt.ylabel('cost') plt.xlabel('iterations (per tens)') plt.title("Learning rate =" + str(learning_rate)) plt.show() return parameters if __name__ == '__main__': train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = lr_utils.load_dataset() train_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T test_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T train_x = train_x_flatten / 255 train_y = train_set_y test_x = test_x_flatten / 255 test_y = test_set_y # layers_dims = [12288, 20, 7, 5, 1] # 5-layer model layers_dims = [12288, 20, 7, 5, 1] parameters = solve(train_x, train_y, layers_dims, 0.0075, num_iterations=2500) predictions_train = predict(train_x, train_y, parameters) # 训练集 predictions_test = predict(test_x, test_y, parameters) # 测试集 # See PyCharm help at https://www.jetbrains.com/help/pycharm/
import numpy as np def sigmoid(Z): """ Implements the sigmoid activation in numpy Arguments: Z -- numpy array of any shape Returns: A -- output of sigmoid(z), same shape as Z cache -- returns Z as well, useful during backpropagation """ A = 1/(1+np.exp(-Z)) cache = Z return A, cache def sigmoid_backward(dA, cache): """ Implement the backward propagation for a single SIGMOID unit. Arguments: dA -- post-activation gradient, of any shape cache -- 'Z' where we store for computing backward propagation efficiently Returns: dZ -- Gradient of the cost with respect to Z """ Z = cache s = 1/(1+np.exp(-Z)) dZ = dA * s * (1-s) assert (dZ.shape == Z.shape) return dZ def relu(Z): """ Implement the RELU function. Arguments: Z -- Output of the linear layer, of any shape Returns: A -- Post-activation parameter, of the same shape as Z cache -- a python dictionary containing "A" ; stored for computing the backward pass efficiently """ A = np.maximum(0,Z) assert(A.shape == Z.shape) cache = Z return A, cache def relu_backward(dA, cache): """ Implement the backward propagation for a single RELU unit. Arguments: dA -- post-activation gradient, of any shape cache -- 'Z' where we store for computing backward propagation efficiently Returns: dZ -- Gradient of the cost with respect to Z """ Z = cache dZ = np.array(dA, copy=True) # just converting dz to a correct object. # When z <= 0, you should set dz to 0 as well. dZ[Z <= 0] = 0 assert (dZ.shape == Z.shape) return dZ