Codeforces 1192B 全dfs序 + 线段树
题意:给你一颗树,每次会修改一条边的边权,问修改之后的树的直径是多少?
思路:来源于:https://www.cnblogs.com/TinyWong/p/11260601.html
得到树的全序dfs序之后,我们考虑用线段树维护x - 2 * y + z。维护方法和2017, 2016那道题差不多,对于每个区间维护:x, -y, z, x - 2 * y, -2 * y + z, x - 2 * y + z6个部分的最大值,然后区间合并。
代码:
#include <bits/stdc++.h> #define ls (o << 1) #define rs (o << 1 | 1) #define LL long long #define INF 1e18 using namespace std; const int maxn = 100010; int lp[maxn], rp[maxn], mp[maxn * 2], tot; vector<pair<int, long long> > G[maxn]; LL d[maxn]; void add(LL x, LL y, LL z) { G[x].push_back(make_pair(y, z)); G[y].push_back(make_pair(x, z)); } struct edge { int u, v; LL w; }; edge a[maxn]; struct Seg { LL v[6], lz; //0: a //1: b //2: c //3: a + 2 * b //4: 2 * c + b //5: a + b + 2 * c }; Seg tr[maxn * 8]; void pushup(int o) { //0: tr[o].v[0] = max(tr[ls].v[0], tr[rs].v[0]); //1: tr[o].v[1] = max(tr[ls].v[1], tr[rs].v[1]); //2: tr[o].v[2] = max(tr[ls].v[2], tr[rs].v[2]); //3: tr[o].v[3] = max(tr[ls].v[3], tr[rs].v[3]); tr[o].v[3] = max(tr[o].v[3], tr[ls].v[0] + 2ll * tr[rs].v[1]); //4: tr[o].v[4] = max(tr[ls].v[4], tr[rs].v[4]); tr[o].v[4] = max(tr[o].v[4], 2ll * tr[ls].v[1] + tr[rs].v[2]); //: 5 tr[o].v[5] = max(tr[ls].v[5], tr[rs].v[5]); tr[o].v[5] = max(tr[o].v[5], tr[ls].v[3] + tr[rs].v[2]); tr[o].v[5] = max(tr[o].v[5], tr[ls].v[0] + tr[rs].v[4]); } void maintain(int o, LL x) { tr[o].lz += x; tr[o].v[0] += x; tr[o].v[1] -= x; tr[o].v[2] += x; tr[o].v[3] -= x; tr[o].v[4] -= x; } void pushdown(int o) { if(tr[o].lz) { maintain(ls, tr[o].lz); maintain(rs, tr[o].lz); tr[o].lz = 0; } } void build(int o, int l, int r) { tr[o].lz = 0; if(l == r) { tr[o].v[0] = tr[o].v[2] = d[mp[l]]; tr[o].v[4] = tr[o].v[3] = tr[o].v[1] = -d[mp[l]]; tr[o].v[5] = 0; return; } int mid = (l + r) >> 1; build(ls, l, mid); build(rs, mid + 1, r); pushup(o); } void update(int o, int l, int r, int ql, int qr, LL val) { if(l >= ql && r <= qr) { maintain(o, val); return; } int mid = (l + r) >> 1; pushdown(o); if(ql <= mid) update(ls, l, mid, ql, qr, val); if(qr > mid) update(rs, mid + 1, r, ql, qr, val); pushup(o); } void dfs(int x, int fa, LL dis) { mp[++tot] = x; lp[x] = tot; rp[x] = tot; d[x] = dis; for (auto y : G[x]) { if(y.first == fa) continue; dfs(y.first, x, dis + y.second); mp[++tot] = x; rp[x] = tot; } } int main() { int n, m; LL w, x, y, z; scanf("%d%d%lld", &n, &m, &w); for (int i = 1; i < n; i++) { scanf("%lld%lld%lld", &x, &y, &z); add(x, y, z); a[i].u = x, a[i].v = y, a[i].w = z; } dfs(1, 0, 0); build(1, 1, tot); LL ans = 0; while(m--) { scanf("%lld%lld", &x, &y); x = (x + ans) % (n - 1) + 1; y = (y + ans) % w; int p; if(lp[a[x].u] < lp[a[x].v]) p = a[x].v; else p = a[x].u; update(1, 1, tot, lp[p], rp[p], y - a[x].w); a[x].w = y; ans = tr[1].v[5]; printf("%lld\n", ans); } }