gym/102253C Colorful Tree 树上计数
题意:有一颗数,每个点有一个颜色,定义两点之间的距离为两点路径之间不同颜色的数目,问所有路径的距离和是多少?
思路:每个颜色的贡献为路径中有这个颜色的路径数。先假设所有路径都会经过一种颜色,再减去不会经过这个颜色的路径数就是这个颜色的贡献。
看一下这个博客会好理解一些吧:https://blog.csdn.net/f_zyj/article/details/76168180
代码:
#include <bits/stdc++.h> #define LL long long using namespace std; const int maxn = 200010; vector<int> G[maxn]; int c[maxn]; LL ans[maxn * 2], res; int s[maxn]; int n; void add(int x, int y) { G[x].push_back(y); G[y].push_back(x); } LL dfs(int x, int fa) { LL sz = 1, tmp = s[c[x]]; s[c[x]] = x; for (int i = 0; i < G[x].size(); i++) { int y = G[x][i]; if(y == fa) continue; ans[x] = 0; LL sz1 = dfs(y, x); res -= (LL)(sz1 - ans[x]) * (sz1 - ans[x] - 1) / 2; sz += sz1; } if(tmp <= n) ans[tmp] += sz; else ans[tmp] -= sz; s[c[x]] = tmp; return sz; } set<int> st; set<int>::iterator it; int main() { int x, y, kase = 0; while(~scanf("%d", &n)) { st.clear(); res = 0; for (int i = 1; i <= n; i++) { scanf("%d", &c[i]); G[i].clear(); s[i] = 0; st.insert(c[i]); ans[i] = 0; } for (it = st.begin(); it != st.end(); it++) { ans[(*it) + n] = n; s[(*it)] = (n + (*it)); } for (int i = 1; i < n; i++) { scanf("%d%d", &x, &y); add(x, y); } res = (LL) st.size() * n * (n - 1) / 2; dfs(1, -1); for (it = st.begin(); it != st.end(); it++) { res -= ans[(*it) + n] * (ans[(*it) + n] - 1) / 2; } printf("Case #%d: %lld\n", ++kase, res); } }