Codeforces 354C 暴力 数论

题意:给你一个数组,你可以把数组中的数减少最多k,问数组中的所有数的GCD最大是多少?

思路:容易发现,GCD的上限是数组中最小的那个数,而因为最多可以减少k,及可以凑出来的余数最大是k,那么GCD的下限是k + 1,所以当最小的数小于等于k + 1时,答案是最小的数。如果最小的数大于k + 1,我们从大到小枚举GCD,假设当前枚举的数是x,那么如果一个数在[t * x, t * x + k](t是一个常数)之间,那么就可以被凑出来,我们看一下最后凑出来的数是不是n个就可以了。我们可以用前缀和优化,这样查询区间操作是O(1)的。因为调和复杂度是nlogn的,所有可以过。

代码:

#include <bits/stdc++.h>
#define LL long long
#define INF 0x3f3f3f3f
#define db double
#define pii pair<int, int>
using namespace std;
const int maxn = 300010;
int a[maxn];
int sum[1000010];
int main() {
	int n, k, mi = 1e9;
//	freopen("Cin.txt", "r", stdin);
	scanf("%d%d", &n, &k);
	for (int i = 1; i <= n; i++) {
		scanf("%d", &a[i]);
		mi = min(mi, a[i]);
	}
	if(mi <= k + 1) {
		printf("%d\n", mi);
	}
	for (int i = 1; i <= n; i++) {
		sum[a[i]]++;
	}
	for (int i = 1; i <= 1e6; i++)
		sum[i] += sum[i - 1];
	for (int i = mi; i >= k + 1; i--) {
		int now = 0;
		for (int j = 1; i * j <= 1e6; j++) {
			now += sum[min(1000000, i * j + k)] - sum[i * j - 1];
			if(now == n) {
				printf("%d\n", i);
				return 0;
			}
		}
	}
}  

  

posted @ 2019-06-30 14:11  维和战艇机  阅读(262)  评论(0编辑  收藏  举报