Codeforces 1163F 最短路 + 线段树 (删边最短路)

题意:给你一张无向图,有若干次操作,每次操作会修改一条边的边权,每次修改后输出1到n的最短路。修改相互独立。

思路:我们先以起点和终点为根,找出最短路径树,现在有两种情况:

1:修改的边不是1到n的最短路上的边,那么可能出现的情况就是这条边的权值变得足够小,出现了新的最短路,那么我们只需判断一下是不是出现了新的最短路即可,假设这条边的两端是x, y,修改后的权值是z,dis1是从1开始的最短路,dis2是从n开始的最短路,那么ans = min(dis1[n], dis1[x] +dis2[y] + z, dis1[y] + dis2[x] + z)。

2:修改的边是1到n的最短路上的边,这个相对麻烦一点,因为我们需要知道原来不是最短路的路径,会不会因为这次修改而变成最短路。因为是最短路径树,所以如果不考虑修改的这条边还想到达终点,我们必须要添加一条非树边了。我们可以算出经过非树边的路径长度(同1),然后考虑它的影响范围。可以发现,影响范围是这条非树边路径和原最短路没有重合的部分,把原最短路看成一个序列的话,问题转化成了一个区间取最小值,用线段树维护即可。

代码:

#include <bits/stdc++.h>
#define pii pair<int, int>
#define LL long long
#define piii pair<pii, int>
#define ls(x) (x << 1)
#define rs(x) ((x << 1) | 1)
using namespace std;
const int maxn = 200010;
vector<piii> G[maxn];
piii edge[maxn];
int n;
map<int, int> mp; 
void add(int x, int y, int z, int id) {
	G[x].push_back(make_pair(make_pair(y, z), id));
	G[y].push_back(make_pair(make_pair(x, z), id));
}
struct node {
	bool flag;
	LL mi, Set;
};
struct SegmentTree {
	int n;
	node tr[maxn * 4];
	void pushup(int o) {
		tr[o].mi = min(tr[ls(o)].mi, tr[rs(o)].mi);
	}
	
	void maintain(int o, LL val) {
		tr[o].Set = min(tr[o].Set, val);
		tr[o].mi = min(tr[o].mi, tr[o].Set);
		tr[o].flag = 1;
	}
	
	void pushdown(int o) {
		if(tr[o].flag) {
			maintain(ls(o), tr[o].Set);
			maintain(rs(o), tr[o].Set);
			tr[o].Set = 1e18;
			tr[o].flag = 0;
		}
	}
	
	void build(int o, int l, int r) {
		if(l == r) {
			tr[o].mi = 1e18;
			tr[o].flag = 0;
			tr[o].Set = 1e18;
			return;
		}
		int mid = (l + r) >> 1;
		build(ls(o), l, mid);
		build(rs(o), mid + 1, r);
		tr[o].mi = 1e18;
		tr[o].flag = 0;
		tr[o].Set = 1e18;
	}
	
	void update(int o, int l, int r, int ql, int qr, LL val) {
		if(ql > qr) return;
		if(l == 0) return;
		if(l >= ql && r <= qr) {
			maintain(o, val);
			return;
		}
		pushdown(o);
		int mid = (l + r) >> 1;
		if(ql <= mid) update(ls(o), l, mid, ql, qr, val);
		if(qr > mid) update(rs(o), mid + 1, r, ql, qr, val);
		pushup(o);
	}
	
	LL query(int o, int l, int r, int pos) {
		if(l == r && l == pos) {
			return tr[o].mi;
		}
		pushdown(o);
		int mid = (l + r) >> 1;
		if(pos <= mid) return query(ls(o), l, mid, pos);
		else return query(rs(o), mid + 1, r, pos);
	}
};
SegmentTree st;
struct Dj {
	priority_queue<pair<long long, int> > q;
	pii pre[maxn];
	bool in_line[maxn], v[maxn], in_tree[maxn], is_line[maxn];
	LL dis[maxn];
	vector<int> G1[maxn];
	int f[maxn];
	vector<int> line;
	vector<LL> re;
	
	void add1(int x, int y) {
		G1[x].push_back(y);
		G1[y].push_back(x);
	}
	
	void dijkstra(int s) {
		memset(v, 0, sizeof(v));
		memset(dis, 0x3f, sizeof(dis));
		q.push(make_pair(0, s));
		dis[s] = 0;
		while(q.size()) {
			int x = q.top().second;
			q.pop();
			if(v[x]) continue;
			v[x] = 1;
			for (int i = 0; i < G[x].size(); i++) {
				int y = G[x][i].first.first;
				LL z = G[x][i].first.second;
				if(v[y]) continue;
				if(dis[y] > dis[x] + z) {
					dis[y] = dis[x] + z;
					pre[y] = make_pair(x, G[x][i].second);
					q.push(make_pair(-dis[y], y));
				}
			}
		}
	}
	
	void dfs(int x, int flag, int fa) {
		f[x] = flag;
		for (int i = 0 ; i < G1[x].size(); i++) {
			int y = G1[x][i];
			if(y == fa || is_line[y]) continue;
			dfs(y, flag, x);
		}
	}
	
	void solve(int s) {
		for (int i = 1; i <= n; i++) {
			if(i == s) continue;
			add1(i, pre[i].first);
			in_tree[pre[i].second] = 1;
		}
		for (int i = n + 1 - s; i != s; i = pre[i].first) {
			line.push_back(i);
			in_line[pre[i].second] = 1;
			is_line[i] = 1;
		}
		line.push_back(s);
		is_line[s] = 1;
		for (int i = 0; i < line.size(); i++) {
			int y = line[i];
			dfs(y, y, -1);
		}	
	}
};
Dj dj1, dj2;
int main() {
	int x, y, z, m, T;
//	freopen("1163F.in", "r", stdin);
//	freopen("1163F.out", "w", stdout);
	scanf("%d%d%d", &n, &m, &T);
	for (int i = 1; i <= m; i++) {
		scanf("%d%d%d", &x, &y, &z);
		edge[i] = make_pair(make_pair(x, y), z); 
		add(x, y, z, i);
	}
	dj1.dijkstra(1), dj2.dijkstra(n);
	dj1.solve(1), dj2.solve(n);
	int cnt = 0;
	for (int i = dj1.line.size() - 1; i >= 0; i--) {
		mp[dj1.line[i]] = ++cnt;
	}
	st.build(1, 1, cnt - 1);
	for (int i = 1; i <= m; i++) {
		if(dj1.in_tree[i] && dj2.in_tree[i]) continue;
		else {
			int x = edge[i].first.first, y = edge[i].first.second;
			LL tmp = 1e18;
			int l, r;
			l = min(mp[dj1.f[x]], mp[dj2.f[y]]), r = max(mp[dj1.f[x]], mp[dj2.f[y]]);
			tmp = dj1.dis[x] + dj2.dis[y] + edge[i].second;
			if(l >= 1 && r <= cnt) 
				st.update(1, 1, cnt - 1, l, r - 1, tmp);
			swap(x, y);
			l = min(mp[dj1.f[x]], mp[dj2.f[y]]), r = max(mp[dj1.f[x]], mp[dj2.f[y]]);
			tmp = dj1.dis[x] + dj2.dis[y] + edge[i].second;
			if(l >= 1 && r <= cnt) 
				st.update(1, 1, cnt - 1, l, r - 1, tmp);
		}
	}
	int cnt_T = 0;
	while(T--) {
		cnt_T++;
		LL ans = 0;
		scanf("%d%d", &x, &y);
		int l1 = edge[x].first.first, r1 = edge[x].first.second;
		if(!dj1.in_line[x]) {
			ans = dj1.dis[n];
			ans = min(ans, min(dj1.dis[l1] + dj2.dis[r1] + y, dj1.dis[r1] + dj2.dis[l1] + y));
			printf("%lld\n", ans);
		} else {
			LL ans = dj1.dis[l1] + dj2.dis[r1] + y;
			ans = min(ans, dj1.dis[r1] + dj2.dis[l1] + y);
			int now = min(mp[l1], mp[r1]);
			printf("%lld\n", min(ans, st.query(1, 1, cnt - 1, now)));
		}
	}
}

  

posted @ 2019-05-20 09:12  维和战艇机  阅读(1134)  评论(0编辑  收藏  举报