HDU 4899 Hero meet devil (状压DP, DP预处理)
题意:给你一个基因序列s(只有A,T,C,G四个字符,假设长度为n),问长度为m的基因序列s1中与给定的基因序列LCS是0,1......n的有多少个?
思路:最直接的方法是暴力枚举长度为m的串,然后再用求LCS的dp。当然我们可以在枚举的时候同时进行dp,但是复杂的仍然为O(4 ^ m)。我们可以观察求LCS 的状态转移方程:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) 若s[i] == s1[j] dp[i][j] = max(dp[i - 1][j - 1] + 1)。可以发现,每一行的相邻的状态最多只会差1,那么我们可以用差分的方法转化为状压dp。剩下的部分这两篇博客讲的很清楚了:https://www.cnblogs.com/RabbitHu/p/BZOJ3864.html, https://www.cnblogs.com/owenyu/p/6724616.html
代码:
#include <bits/stdc++.h> #define LL long long using namespace std; const LL mod = 1000000007; const int maxn = 1010; char mp[4] = {'A', 'T', 'C', 'G'}; int ans[20]; int dp[2][1 << 15]; int trans[1 << 15][4], cnt[1 << 15]; char s[maxn]; void init(int n) { int pre[20], cur[20]; memset(pre, 0, sizeof(pre)); memset(cur, 0, sizeof(cur)); for (int i = 0; i < (1 << n); i++) { if(i)cnt[i] = cnt[i >> 1] + (i & 1); pre[0] = i & 1; for (int j = 1; j < n; j++) pre[j] = pre[j - 1] + (i >> j & 1); for (int k = 0; k < 4; k++) { int now = 0; cur[0] = pre[0]; if(mp[k] == s[0]) cur[0] = 1; now |= cur[0]; for (int j = 1; j < n; j++) { cur[j] = max(cur[j - 1], pre[j]); if(mp[k] == s[j]) { cur[j] = max(cur[j], pre[j - 1] + 1); } now |= ((cur[j] - cur[j - 1]) << j); } trans[i][k] = now; } } } int main() { int T, m, n; scanf("%d", &T); while(T--) { scanf("%s", s); scanf("%d", &m); int n = strlen(s); init(n); memset(dp, 0, sizeof(dp)); memset(ans, 0, sizeof(ans)); dp[0][0] = 1; for (int i = 1; i <= m; i++) { memset(dp[i & 1], 0, sizeof(dp[i & 1])); int pre = (i & 1) ^ 1; int now = i & 1; for (int j = 0; j < (1 << n); j++) { for (int k = 0; k < 4; k++) { dp[now][trans[j][k]] = (dp[pre][j] + dp[now][trans[j][k]]) % mod; } } } for (int i = 0; i < (1 << n); i++) ans[cnt[i]] = (ans[cnt[i]] + dp[m & 1][i]) % mod; for(int i = 0; i <= n; i++) printf("%d\n", ans[i]); } }