洛谷P2725 [USACO3.1]邮票 Stamps

题意:

给一组 \(n\) 枚邮票的面值集合和一个上限 \(k\) —— 表示信封上能够贴 \(k\) 张邮票。请求出最大的正整数 \(m\),满足 \(1\)\(m\) 的面值都可以用不超过 \(k\) 张邮票表示出来。

思路:

因为每种面值都能拿\(∞\)个,所以不难想到完全背包来解。令\(f[i]\)表示凑面值为i的时候用的最少张数。
最大不超过\(k\)张,所以面值张数越少越好。每次两种选择:
选,并且再选一张不会超过\(k\)张,那么就去从\(f[j-a[i]]\)那儿转移过来,并且张数\(+1\)
不选:从自身转移,即\(f[j]\)
转移方程就是:\(f[j]=min(f[j],f[j-a[i]]+1)\)
然后一开始的初始值先全赋为最大值,组成0元肯定有一种,所以\(f[0]=1\)(切记!)
最大重量不可能超过3000000,所以我们枚举包的容量最大到3000000就ok了。
最后搜索答案时扫一遍,碰到第一个\(f[i]\)没改变的,就输出i-1,结束。

code:

#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <queue>
using namespace std;
const int N=4000005;
const int M=55;
int f[N],k,n,a[M];
int main()
{
	cin>>k>>n;
	memset(f,0x7f,sizeof f);
	f[0]=0;
	for(int i=1;i<=n;i++)
	{
		cin>>a[i];
	}
	for(int i=1;i<=n;i++)
	{
		for(int j=a[i];j<=3000005;j++)
		{
			if(f[j-a[i]]<k)
			{
				f[j]=min(f[j],f[j-a[i]]+1);
			}
		}
	}
	int ans=0;
	for(int i=1;i<=3000005;i++)
	{

		if(f[i]==0x7f7f7f7f)
		{
			ans=i-1;
			break;
		}
	}
	cout<<ans;
    return 0;
}

posted @ 2020-03-24 22:57  panjx  阅读(240)  评论(0编辑  收藏  举报