ValueError: This model has not yet been built. Build the model first by calling `build()` or calling `fit()` with some data, or specify an `input_shape` argument in the first layer(s) for automatic
源代码:
model = vgg16()
model.summary()
错误提示:
D:\Anaconda\envs\tensorflow\python.exe D:/PYCHARMprojects/Dailypractise/P29.py 2021-07-27 15:02:48.283426: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN)to use the following CPU instructions in performance-critical operations: AVX AVX2 To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. Traceback (most recent call last): File "D:/PYCHARMprojects/Dailypractise/P29.py", line 79, in <module> model.summary() File "D:\Anaconda\envs\tensorflow\lib\site-packages\tensorflow\python\keras\engine\training.py", line 2351, in summary raise ValueError('This model has not yet been built. ' ValueError: This model has not yet been built. Build the model first by calling `build()` or calling `fit()` with some data, or specify an `input_shape` argument in the first layer(s) for automatic build. Process finished with exit code 1
修正:
model = vgg16() model.build(input_shape=( 100, 28, 28, 1)) model.summary()
效果:
D:\Anaconda\envs\tensorflow\python.exe D:/PYCHARMprojects/Dailypractise/P29.py 2021-07-27 15:07:47.046058: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN)to use the following CPU instructions in performance-critical operations: AVX AVX2 To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= reshape (Reshape) (100, 28, 28, 1) 0 _________________________________________________________________ conv2d (Conv2D) (100, 28, 28, 64) 640 _________________________________________________________________ conv2d_1 (Conv2D) (100, 28, 28, 64) 36928 _________________________________________________________________ max_pooling2d (MaxPooling2D) (100, 14, 14, 64) 0 _________________________________________________________________ conv2d_2 (Conv2D) (100, 14, 14, 128) 73856 _________________________________________________________________ conv2d_3 (Conv2D) (100, 14, 14, 128) 147584 _________________________________________________________________ max_pooling2d_1 (MaxPooling2 (100, 7, 7, 128) 0 _________________________________________________________________ conv2d_4 (Conv2D) (100, 7, 7, 256) 295168 _________________________________________________________________ conv2d_5 (Conv2D) (100, 7, 7, 256) 590080 _________________________________________________________________ conv2d_6 (Conv2D) (100, 7, 7, 256) 590080 _________________________________________________________________ max_pooling2d_2 (MaxPooling2 (100, 3, 3, 256) 0 _________________________________________________________________ conv2d_7 (Conv2D) (100, 3, 3, 512) 1180160 _________________________________________________________________ conv2d_8 (Conv2D) (100, 3, 3, 512) 2359808 _________________________________________________________________ conv2d_9 (Conv2D) (100, 3, 3, 512) 2359808 _________________________________________________________________ max_pooling2d_3 (MaxPooling2 (100, 1, 1, 512) 0 _________________________________________________________________ conv2d_10 (Conv2D) (100, 1, 1, 512) 2359808 _________________________________________________________________ conv2d_11 (Conv2D) (100, 1, 1, 512) 2359808 _________________________________________________________________ conv2d_12 (Conv2D) (100, 1, 1, 512) 2359808 _________________________________________________________________ flatten (Flatten) (100, 512) 0 _________________________________________________________________ dense (Dense) (100, 256) 131328 _________________________________________________________________ dropout (Dropout) (100, 256) 0 _________________________________________________________________ dense_1 (Dense) (100, 256) 65792 _________________________________________________________________ dropout_1 (Dropout) (100, 256) 0 _________________________________________________________________ dense_2 (Dense) (100, 10) 2570 _________________________________________________________________ activation (Activation) (100, 10) 0 ================================================================= Total params: 14,913,226 Trainable params: 14,913,226 Non-trainable params: 0 _________________________________________________________________ Process finished with exit code 0
欢迎关注我的CSDN博客心系五道口,有问题请私信2395856915@qq.com