搭建简单模型训练MNIST数据集
# -*- coding = utf-8 -*- # @Time : 2021/3/16 # @Author : pistachio # @File : test1.py # @Software : PyCharm # 安装 TensorFlow import tensorflow as tf #载入并准备好 MNIST 数据集。将样本从整数转换为浮点数 mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 #将模型的各层堆叠起来,以搭建 tf.keras.Sequential 模型。为训练选择优化器和损失函数 model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10, activation='softmax') ]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) #训练并验证模型 model.fit(x_train, y_train, epochs=5) model.evaluate(x_test, y_test, verbose=2)
Epoch 1/5 1875/1875 [==============================] - 3s 2ms/step - loss: 0.2942 - accuracy: 0.9143 Epoch 2/5 1875/1875 [==============================] - 4s 2ms/step - loss: 0.1443 - accuracy: 0.9571 Epoch 3/5 1875/1875 [==============================] - 3s 2ms/step - loss: 0.1098 - accuracy: 0.9668 Epoch 4/5 1875/1875 [==============================] - 4s 2ms/step - loss: 0.0896 - accuracy: 0.9726 Epoch 5/5 1875/1875 [==============================] - 3s 2ms/step - loss: 0.0758 - accuracy: 0.9769 313/313 - 0s - loss: 0.0793 - accuracy: 0.9772 Process finished with exit code 0
欢迎关注我的CSDN博客心系五道口,有问题请私信2395856915@qq.com