排序算法笔记

冒泡排序:

public static void bubbleSort(int[] arr) {
        if (arr == null || arr.length < 2) {
            return;
        }
        for (int e = arr.length - 1; e > 0; e--) {
            for (int i = 0; i < e; i++) {
                if (arr[i] > arr[i + 1]) {
                    swap(arr, i, i + 1);
                }
            }
        }
    }

    public static void swap(int[] arr, int i, int j) {
        arr[i] = arr[i] ^ arr[j];
        arr[j] = arr[i] ^ arr[j];
        arr[i] = arr[i] ^ arr[j];
    }

选择排序:

public static void selectionSort(int[] arr) {
        if (arr == null || arr.length < 2) {
            return;
        }
        for (int i = 0; i < arr.length - 1; i++) {
            int minIndex = i;
            for (int j = i + 1; j < arr.length; j++) {
                minIndex = arr[j] < arr[minIndex] ? j : minIndex;
            }
            swap(arr, i, minIndex);
        }
    }

插入排序:

public static void insertionSort(int[] arr) {
        if (arr == null || arr.length < 2) {
            return;
        }
        for (int i = 1; i < arr.length; i++) {
            for (int j = i - 1; j >= 0 && arr[j] > arr[j + 1]; j--) {
                swap(arr, j, j + 1);
            }
        }
    }

以上排序时间复杂度为O(N^2),空间复杂度为O(1)。

实现冒泡和插入排序可以做到稳定性,选择排序不稳定。

选择排序不稳定表现:例如有5、8、5、2、3。第一遍会有5跟2交换,变成2、8、5、5、3,此后排序完成,原本的两个5的相对位置已经调换,于是不稳定。

快速排序:

时间复杂度O(N*logN),额外空间复杂度O(logN),常规实现做不到稳定性。

划分值的选取对程序时间复杂度影响较大

public static void quickSort(int[] arr) {
        if (arr == null || arr.length < 2) {
            return;
        }
        quickSort(arr, 0, arr.length - 1);
    }

    public static void quickSort(int[] arr, int l, int r) {
        if (l < r) {
            swap(arr, l + (int) (Math.random() * (r - l + 1)), r);
      //快排原本默认将最后一个数作为划分依据,这里将随机选取一个数将其换至最后并作为划分依据

int[] p = partition(arr, l, r);
quickSort(arr, l, p[0] - 1);
quickSort(arr, p[1] + 1, r);
        }
    }

    public static int[] partition(int[] arr, int l, int r) {
        int less = l - 1;
        int more = r;
        while (l < more) {
            if (arr[l] < arr[r]) {
                swap(arr, ++less, l++);
            } else if (arr[l] > arr[r]) {
                swap(arr, --more, l);
            } else {
                l++;
            }
        }
        swap(arr, more, r);
        return new int[] { less + 1, more };
    }

 

归并排序:

时间复杂度O(N*logN),额外空间复杂度O(N),实现可以做到稳定性

 

public static void mergeSort(int[] arr) {
        if (arr == null || arr.length < 2) {
            return;
        }
        mergeSort(arr, 0, arr.length - 1);
    }

    public static void mergeSort(int[] arr, int l, int r) {
        if (l == r) {
            return;
        }
        int mid = l + ((r - l) >> 1);
        mergeSort(arr, l, mid);
        mergeSort(arr, mid + 1, r);
        merge(arr, l, mid, r);
    }

    public static void merge(int[] arr, int l, int m, int r) {
        int[] help = new int[r - l + 1];
        int i = 0;
        int p1 = l;
        int p2 = m + 1;
        while (p1 <= m && p2 <= r) {
            help[i++] = arr[p1] < arr[p2] ? arr[p1++] : arr[p2++];
        }
        while (p1 <= m) {
            help[i++] = arr[p1++];
        }
        while (p2 <= r) {
            help[i++] = arr[p2++];
        }
        for (i = 0; i < help.length; i++) {
            arr[l + i] = help[i];
        }
    }

 

 

 

堆排序:

时间复杂度O(N*logN),额外空间复杂度O(1),实现不能做到稳定性

public static void heapSort(int[] arr) {
        if (arr == null || arr.length < 2) {
            return;
        }
        for (int i = 0; i < arr.length; i++) {
            heapInsert(arr, i);
        }
        int size = arr.length;
        swap(arr, 0, --size);
        while (size > 0) {
            heapify(arr, 0, size);
            swap(arr, 0, --size);
        }
    }

    public static void heapInsert(int[] arr, int index) {
        while (arr[index] > arr[(index - 1) / 2]) {
            swap(arr, index, (index - 1) / 2);
            index = (index - 1) / 2;
        }
    }

    public static void heapify(int[] arr, int index, int size) {
        int left = index * 2 + 1;
        while (left < size) {
            int largest = left + 1 < size && arr[left + 1] > arr[left] ? left + 1 : left;
            largest = arr[largest] > arr[index] ? largest : index;
            if (largest == index) {
                break;
            }
            swap(arr, largest, index);
            index = largest;
            left = index * 2 + 1;
        }
    }

    public static void swap(int[] arr, int i, int j) {
        int tmp = arr[i];
        arr[i] = arr[j];
        arr[j] = tmp;
    }

  当需要对类对象的某个属性进行排序时,由于对象不单单具备需要排序的这个属性,还同时有另外的属性,排序稳定即保证对象所具有的其他属性的相对位置不会发生变化。如当使用不稳定的排序时,速度快但是不具备稳定性,此时对象里其他属性的相对次序就会混乱,不可使用。

 

posted @ 2021-01-30 11:17  γGama  阅读(71)  评论(0编辑  收藏  举报