mapreduce的shuffle机制
1.1 概述:
mapreduce中,map阶段处理的数据如何传递给reduce阶段,是mapreduce框架中最关键的一个流程,这个流程就叫shuffle;(从map的输出到reduce的输入)
shuffle: 洗牌、发牌——(核心机制:数据分区,排序,缓存);
具体来说:就是将maptask输出的处理结果数据,分发给reducetask,并在分发的过程中,对数据按key进行了分区和排序;
1.2 主要流程:
Shuffle缓存流程:
Buffer in memory:内存缓冲区
Partition:分区
Sort:分类
Spill to disk:切片到磁盘
Merge on disk:合并到磁盘
Fetch:拿来,拿取
Copy phase:复制阶段
Mixture of in-memory and on-disk data:内存和磁盘数据的混合
(可以看出一个maptask可以对应多个reducetask)
shuffle是MR处理流程中的一个过程,它的每一个处理步骤是分散在各个map task和reduce task节点上完成的,整体来看,分为3个操作:
1、分区partition
2、Sort根据key排序
3、Combiner进行局部value的合并
1.3 详细流程
1、 maptask收集我们的map()方法输出的kv对,放到内存缓冲区中
(环形缓冲区默认100M)
2、 从内存缓冲区不断溢出本地磁盘文件,可能会溢出多个文件
(经过patition分区,key的compareto方法,经过排序,由combiner合并同key键值对,再经过快排/外部排序,溢出到文件)
3、 多个溢出文件会被合并成大的溢出文件
(经过merge文件合并,归并排序,得到maptask的最终结果文件)
------------------------------------------------------------------------------------------------------------
4、 在溢出过程,及合并的过程中,都要调用partitoner进行分组和针对key进行排序
5、 reducetask根据自己的分区号,去各个maptask机器上取相应的结果分区数据
6、 reducetask会取到同一个分区的来自不同maptask的结果文件,reducetask会将这些文件再进行合并(归并排序)(一个reducetask可以对应多个maptask,两者是多对多)
7、 合并成大文件后,shuffle的过程也就结束了,后面进入reducetask的逻辑运算过程(从文件中取出一个一个的键值对group,调用用户自定义的reduce()方法)
Shuffle中的缓冲区大小会影响到mapreduce程序的执行效率,原则上说,缓冲区越大,磁盘io的次数越少,执行速度就越快
缓冲区的大小可以通过参数调整, 参数:io.sort.mb 默认100M
1.4 详细流程示意图