使用flume将数据sink到HBase
===========>先创建Hbase表和列族<================
案例1:源数据一行对应Hbase的一列存储(hbase-1.12没有问题)
================================================================================
#说明:案例是flume监听目录/home/hadoop/flume_hbase采集到hbase;必须先在Hbase中创建表和列族
数据目录:
vi /home/hadoop/flume_hbase/word.txt
1001 pan nan
2200 lili nv
create 'tb_words','cf_wd'
vi flume-hbase.conf
#Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
#Describe/configure the source
a1.sources.r1.type = spooldir //当监控文件夹时,不用执行文件,只需在文件夹下有操作,就可监听到信息
a1.sources.r1.spoolDir=/home/hadoop/flume_hbase
# Describe the sink
a1.sinks.k1.type =asynchbase
a1.sinks.k1.table = tb_words
a1.sinks.k1.columnFamily = cf_wd
#目前自己处理到支持一个列名的,多个列名称失败了,多个列名考虑使用下面的案例的正则表达式方式匹配
a1.sinks.k1.serializer.payloadColumn=wd
a1.sinks.k1.serializer.incrementColumn=last
a1.sinks.k1.serializer.rowPrefix=QM
a1.sinks.k1.serializer.suffix=timestamp
a1.sinks.k1.serializer =org.apache.flume.sink.hbase.SimpleAsyncHbaseEventSerializer
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
案例2:使用正则表达式,对行分多个列值
说明:apache-flume-1.7.0-bin.tar.gz 和 Hbase-1.12+
================================================================================
create 'tb_words2','words'
数据目录:
vi /home/hadoop/flume_hbase/data.txt
1001,panzong,nan
2200,lili,nv
flume配置文件:
vi flume_2_hbase.conf
#Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
#Describe/configure the source
a1.sources.r1.type = cn.qm.flume.source.MySource //可更换为spooldir
a1.sources.r1.spoolDir=/home/hadoop/flume_hbase
# Describe the sink
#a1.sinks.k1.type =org.apache.flume.sink.hbase.HBaseSink
a1.sinks.k1.type =hbase
a1.sinks.k1.table = tb_words2
a1.sinks.k1.columnFamily = words
a1.sinks.k1.serializer.enableWal= true
a1.sinks.k1.serializer = org.apache.flume.sink.hbase.RegexHbaseEventSerializer
#查看RegexHbaseEventSerializer类源码,可以快速理解rowKeyIndex/colNames属性
a1.sinks.k1.serializer.regex= ^([0-9]+),([a-z]+),([a-z]+)$
# 指定某一列来当主键,而不是用随机生成的key,#第一列为Hbase的rowkey
#RegexHbaseEventSerializer 源码查看
a1.sinks.k1.serializer.rowKeyIndex =0
#ROW_KEY为系统指定列名
a1.sinks.k1.serializer.colNames= ROW_KEY,name,sex
a1.sinks.k1.zookeeperQuorum =hdp-qm-05:2181,hdp-qm-06:2181,hdp-qm-07:2181
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
#第二列为Hbase的rowkey
#a1.sinks.k1.serializer.rowKeyIndex = 1
#a1.sinks.k1.serializer.regex= ^([0-9]+),([a-z]+),([a-z]+)$
#a1.sinks.k1.serializer.colNames= id,ROW_KEY,sex