numpy函数fromfunction分析

    从函数规则创建数组是非常方便的方法。在numpy中我们常用fromfunction函数来实现这个功能。

    在numpy的官网有这么一个例子。

复制代码
 1 >>> def f(x,y):
 2 ...         return 10*x+y
 3 ...
 4 >>> b = fromfunction(f,(5,4),dtype=int)
 5 >>> b
 6 array([[ 0,  1,  2,  3],
 7        [10, 11, 12, 13],
 8        [20, 21, 22, 23],
 9        [30, 31, 32, 33],
10        [40, 41, 42, 43]])
复制代码

      查找help()解释如下:

  numpy.fromfunction(functionshape**kwargs)[source]

Construct an array by executing a function over each coordinate.

The resulting array therefore has a value fn(x, y, z) at coordinate (x, y, z).

Parameters:

function : callable

The function is called with N parameters, where N is the rank of shape. Each parameter represents the coordinates of the array varying along a specific axis. For example, if shape were (2, 2), then the parameters in turn be (0, 0), (0, 1), (1, 0), (1, 1).

shape : (N,) tuple of ints

Shape of the output array, which also determines the shape of the coordinate arrays passed to function.

dtype : data-type, optional

Data-type of the coordinate arrays passed to function. By default, dtype is float.

Returns:

fromfunction : any

The result of the call to function is passed back directly. Therefore the shape of fromfunction is completely determined by function. If function returns a scalar value, the shape of fromfunction would match the shape parameter.

 

    主要是第二个参数shape,(N,)定义了fromfunction的输出数据形式。

    说起来比较绕口,下面用几个例子说明。

     

复制代码
 1 # -*- coding: utf-8 -*-
 2 from numpy import *
 3 
 4 def f1(x,y):
 5     return x
 6 
 7 def f2(x,y):
 8     return y   
 9 
10 def f3(x,y):
11     return 2*x+y
复制代码

  运行测试:

>>> b=fromfunction(f1, (5,5), dtype = int)
>>> b
array([[0, 0, 0, 0, 0],
[1, 1, 1, 1, 1],
[2, 2, 2, 2, 2],
[3, 3, 3, 3, 3],
[4, 4, 4, 4, 4]])

>>> b=fromfunction(f1, (5,4), dtype = int)
>>> b
array([[0, 0, 0, 0],
[1, 1, 1, 1],
[2, 2, 2, 2],
[3, 3, 3, 3],
[4, 4, 4, 4]])

>>> b=fromfunction(f2, (5,5), dtype = int)
>>> b
array([[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4]])
>>> b=fromfunction(f3, (5,5), dtype = int)
>>> b
array([[ 0, 1, 2, 3, 4],
[ 2, 3, 4, 5, 6],
[ 4, 5, 6, 7, 8],
[ 6, 7, 8, 9, 10],
[ 8, 9, 10, 11, 12]])
>>>

  从上面的测试可以看出,shape()定义了输出矩阵的大小。如shape(5,4),则x参数是5行1列行列式[0,1,2,3,4]. y参数1行4列行列式[0,1,2,3]. 

      将x,y带人func函数计算,最后结果的每个元素是根据func 函数来计算得出。

 

posted on   啊哈彭  阅读(4958)  评论(0编辑  收藏  举报

编辑推荐:
· 从二进制到误差:逐行拆解C语言浮点运算中的4008175468544之谜
· .NET制作智能桌面机器人:结合BotSharp智能体框架开发语音交互
· 软件产品开发中常见的10个问题及处理方法
· .NET 原生驾驭 AI 新基建实战系列:向量数据库的应用与畅想
· 从问题排查到源码分析:ActiveMQ消费端频繁日志刷屏的秘密
阅读排行:
· C# 13 中的新增功能实操
· Ollama本地部署大模型总结
· 【杭电多校比赛记录】2025“钉耙编程”中国大学生算法设计春季联赛(4)
· langchain0.3教程:从0到1打造一个智能聊天机器人
· 2025成都.NET开发者Connect圆满结束

导航

< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5
点击右上角即可分享
微信分享提示