POJ_2488——骑士遍历棋盘,字典序走法
Description
Background
The knight is getting bored of seeing the same black and white squares again and again and has decided to make a journey
around the world. Whenever a knight moves, it is two squares in one direction and one square perpendicular to this. The world of a knight is the chessboard he is living on. Our knight lives on a chessboard that has a smaller area than a regular 8 * 8 board, but it is still rectangular. Can you help this adventurous knight to make travel plans?
Problem
Find a path such that the knight visits every square once. The knight can start and end on any square of the board.
The knight is getting bored of seeing the same black and white squares again and again and has decided to make a journey
around the world. Whenever a knight moves, it is two squares in one direction and one square perpendicular to this. The world of a knight is the chessboard he is living on. Our knight lives on a chessboard that has a smaller area than a regular 8 * 8 board, but it is still rectangular. Can you help this adventurous knight to make travel plans?
Problem
Find a path such that the knight visits every square once. The knight can start and end on any square of the board.
Input
The input begins with a positive integer n in the
first line. The following lines contain n test cases. Each test case consists of
a single line with two positive integers p and q, such that 1 <= p * q <=
26. This represents a p * q chessboard, where p describes how many different
square numbers 1, . . . , p exist, q describes how many different square letters
exist. These are the first q letters of the Latin alphabet: A, . . .
Output
The output for every scenario begins with a line
containing "Scenario #i:", where i is the number of the scenario starting at 1.
Then print a single line containing the lexicographically first path that visits
all squares of the chessboard with knight moves followed by an empty line. The
path should be given on a single line by concatenating the names of the visited
squares. Each square name consists of a capital letter followed by a number.
If no such path exist, you should output impossible on a single line.
If no such path exist, you should output impossible on a single line.
Sample Input
3 1 1 2 3 4 3
Sample Output
Scenario #1: A1 Scenario #2: impossible Scenario #3: A1B3C1A2B4C2A3B1C3A4B2C4
1 #include <cstdio> 2 #include <iostream> 3 #include <string> 4 #include <cstring> 5 //lexicographically first path 6 //题目output中出现了以上几个单词 7 //就是说骑士的移动步子是按照字典顺序来排列的 8 //首先对列进行排序较小的在前面,然后按行进行排序也是较小的在前面 9 //我构造的xy坐标是按照SDL中的图形坐标,x往下递增,y往右递增 10 //转换成数学上的xy坐标就要先对列x做排序然后再对行y做排序 11 int dirx[8]={-2,-2,-1,-1,1,1,2,2}; 12 int diry[8]={-1,1,-2,2,-2,2,-1,1}; 13 14 int T,p,q,mark[27][27]; 15 std::string way; 16 bool DFS(int x,int y,int step) 17 { 18 if(step==p*q) 19 { 20 return true; 21 } 22 for(int i=0;i<8;i++) 23 { 24 int dx=x+dirx[i]; 25 int dy=y+diry[i]; 26 if((dx>=1 && dx<=q) && (dy>=1 && dy<=p) && mark[dx][dy]!=1) 27 { 28 mark[dx][dy]=1; 29 //当找到路径才会插入操作,所以在main函数循环中不需要清空string 30 if(DFS(dx,dy,step+1)) 31 { 32 //在第0个位置插入1个字符 33 //先插入数字然后再插入字母,否则顺序颠倒 34 way.insert(0,1,dy+'0'); 35 way.insert(0,1,dx+'A'-1); 36 return true; 37 } 38 mark[dx][dy]=0; 39 } 40 } 41 return false; 42 } 43 int main() 44 { 45 scanf("%d",&T); 46 for(int i=1;i<=T;i++) 47 { 48 scanf("%d%d",&p,&q); 49 way.clear();//每次都要清空string 50 bool find=false; 51 for(int x=1;x<=q && !find;x++) 52 { 53 for(int y=1;y<=p;y++) 54 { 55 memset(mark,0,sizeof(mark)); 56 mark[x][y]=1; 57 if(DFS(x,y,1)) 58 { 59 //找到的话插入起始位置 60 way.insert(0,1,y+'0'); 61 way.insert(0,1,x+'A'-1); 62 find=true; 63 break; 64 } 65 } 66 } 67 std::cout<<"Scenario #"<<i<<":"<<std::endl; 68 if(find) 69 { 70 //整体输出就行 71 std::cout<<way<<std::endl<<std::endl; 72 } 73 else 74 printf("impossible\n\n"); 75 } 76 return 0; 77 }
——现在的努力是为了小时候吹过的牛B!!