车的可用捕获量
此博客链接:https://www.cnblogs.com/ping2yingshi/p/12576257.html
车的可用捕获量(105min)
题目链接:https://leetcode-cn.com/problems/available-captures-for-rook/
在一个 8 x 8 的棋盘上,有一个白色车(rook)。也可能有空方块,白色的象(bishop)和黑色的卒(pawn)。它们分别以字符 “R”,“.”,“B” 和 “p” 给出。大写字符表示白棋,小写字符表示黑棋。
车按国际象棋中的规则移动:它选择四个基本方向中的一个(北,东,西和南),然后朝那个方向移动,直到它选择停止、到达棋盘的边缘或移动到同一方格来捕获该方格上颜色相反的卒。另外,车不能与其他友方(白色)象进入同一个方格。
返回车能够在一次移动中捕获到的卒的数量。
示例 1:
输入:[[".",".",".",".",".",".",".","."],
[".",".",".","p",".",".",".","."],
[".",".",".","R",".",".",".","p"],
[".",".",".",".",".",".",".","."],
[".",".",".",".",".",".",".","."],
[".",".",".","p",".",".",".","."],
[".",".",".",".",".",".",".","."],
[".",".",".",".",".",".",".","."]]
输出:3
解释:
在本例中,车能够捕获所有的卒。
示例 2:
输入:[[".",".",".",".",".",".",".","."]
,[".","p","p","p","p","p",".","."],
[".","p","p","B","p","p",".","."],
[".","p","B","R","B","p",".","."],
[".","p","p","B","p","p",".","."],
[".","p","p","p","p","p",".","."],
[".",".",".",".",".",".",".","."],
[".",".",".",".",".",".",".","."]]
输出:0
解释:
象阻止了车捕获任何卒。
示例 3:
输入:[[".",".",".",".",".",".",".","."],
[".",".",".","p",".",".",".","."],
[".",".",".","p",".",".",".","."],
["p","p",".","R",".","p","B","."],
[".",".",".",".",".",".",".","."],
[".",".",".","B",".",".",".","."],
[".",".",".","p",".",".",".","."],
[".",".",".",".",".",".",".","."]]
输出:3
解释:
车可以捕获位置 b5,d6 和 f5 的卒。
题解:
题意:
前言:哈哈哈,此题简直了,对于本来就不会玩国际象棋的我来说,题目读的一愣一愣的,请教我弟弟,国际象棋怎么下的,还在电脑上玩了一把国际象棋,正常死了,后来还是看别人的题解加上我弟的解 说,终 于明白题目意思了。
题目意思是说给你一个车(代码中用字母R表示,图形中带着像小皇冠的是车),这个车可以在上下左右四个方向移动,注意这里车是可以直线移动(走几个格子都可以,只要在和车同一直 线上的卒车都可以吃掉)。但是呢,如果车旁边有象(代码用字母B表示,图形中用表示象)时,车不能和象在同一个方格中,也不能越过象去吃卒。
题目要求: 返回车能够在一次移动中捕获到的卒的数量,这里要理解为车一次移动可以捕获多少卒,但是我可以选择不同方向移动一次。
例如:
题目中给的示例1,车可以向上下右三个方向移动一次都可以捕获卒。我感觉这里题目应该说,返回车能够在一次移动中捕获到卒的所有可能数量。这样可更好理解题意。
思路:
1.找到车的位置。
2.判断车的上下左右四个方向上没有象存在的卒有多少。
代码如下:
class Solution { public int numRookCaptures(char[][] board) { int count=0; for(int i=0;i<8;i++) //行 for(int j=0;j<8;j++)//列 { if(board[i][j]=='R')//先找到车 {//然后判断四个方向有没有卒 for(int h=i;h>=0&&board[h][j]!='B';h--)//上 if(board[h][j]=='p') { count++; break; } for(int h=i;h<8&&board[h][j]!='B';h++)//下 if(board[h][j]=='p') { count++; break; } for(int h=j;h>=0&&board[i][h]!='B';h--)//左 if(board[i][h]=='p') { count++; break; } for(int h=j;h<8&&board[i][h]!='B';h++)//右 if(board[i][h]=='p') { count++; break; } } } return count; } }