不容易系列之(3)—— LELE的RPG难题

此博客链接:https://www.cnblogs.com/ping2yingshi/p/12449143.html

不容易系列之(3)—— LELE的RPG难题(92min)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2045

Problem Description
人称“AC女之杀手”的超级偶像LELE最近忽然玩起了深沉,这可急坏了众多“Cole”(LELE的粉丝,即"可乐"),经过多方打探,某资深Cole终于知道了原因,原来,LELE最近研究起了著名的RPG难题:

有排成一行的n个方格,用红(Red)、粉(Pink)、绿(Green)三色涂每个格子,每格涂一色,要求任何相邻的方格不能同色,且首尾两格也不同色.求全部的满足要求的涂法.

以上就是著名的RPG难题.

如果你是Cole,我想你一定会想尽办法帮助LELE解决这个问题的;如果不是,看在众多漂亮的痛不欲生的Cole女的面子上,你也不会袖手旁观吧?

 
Input
输入数据包含多个测试实例,每个测试实例占一行,由一个整数N组成,(0<n<=50)。
 
Output
对于每个测试实例,请输出全部的满足要求的涂法,每个实例的输出占一行。
 
Sample Input
1
2
 
Sample Output
3
6
题解:
        方法:数学推导。
        思路:由题目已知,当n=1时,可以有3种结果,当n=2时,可以有6种结果,当n=3时,可以有6种结果,当求n个方格,实际可以由n-1个方格的结果加上到达n个方格还有几种涂法。题目要求第一种颜色不能和最后一种颜色相同,相邻的颜色不能相同,当有n个方格时,第一个方格不能和第n个方格相同,第n-1个方格不能和第n个方格相同,而第n个方格涂的颜色数可以由第n-1个颜色数得来,分两种情况:
1.第一个方格颜色和第n-1个颜色涂的一样,此时第n个方格颜色可以有两种涂法,而第n-1种涂法实际上等于第n-2个方格的涂法,所以这种情况有2*(n-2)种涂法。
2.第一个方格颜色和第n-1个颜色涂的不一样,此时第n个方格只有一种颜色可涂,所以这种情况有n-1种涂法。
代码如下:
 
 
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
  int n;
  while(~scanf("%d",&n))
  {
    long long colnum[10000];
    int i;
    colnum[1]=3;
    colnum[2]=6;
    colnum[3]=6;
    for(i=4;i<=n;i++)
    {
       colnum[i]=colnum[i-1]+2*colnum[i-2];
    } 
    printf("%lld\n" ,colnum[n]);   
  }              
  return 0;
}
一开始用java写的,我在编辑器运行没有错误,但是提交说编辑错误,目前没有找到错误。(经过师兄的指点,java提交代码类名需要时Main,以前都是c提交的,这下知道了)
代码如下:
import java.util.Scanner;


public class test {

    public static void main(String[] args) {
        // TODO Auto-generated method stub
       Scanner scan=new Scanner(System.in);
      
       while(scan.hasNext())
       {
           int n=scan.nextInt();
           long [] cornum=new long[60];
           cornum[1]=3;
           cornum[2]=6;
           cornum[3]=6;
           for(int i=4;i<=n;i++)
           {
              cornum[i]=cornum[i-1]+2*cornum[i-2]; 
           }
           System.out.println(cornum[n]);
   
       }

    }

}

 

posted @ 2020-03-09 15:51  萍2樱释  阅读(228)  评论(2编辑  收藏  举报