04 2019 档案

摘要:在机器学习中的矩阵向量求导(二) 矩阵向量求导之定义法中,我们讨论了定义法求解矩阵向量求导的方法,但是这个方法对于比较复杂的求导式子,中间运算会很复杂,同时排列求导出的结果也很麻烦。因此我们需要其他的一些求导方法。本文我们讨论使用微分法来求解标量对向量的求导,以及标量对矩阵的求导。 本文的标量对向量 阅读全文
posted @ 2019-04-29 19:42 刘建平Pinard 阅读(40736) 评论(84) 推荐(18) 编辑
摘要:在机器学习中的矩阵向量求导(一) 求导定义与求导布局中,我们讨论了向量矩阵求导的9种定义与求导布局的概念。今天我们就讨论下其中的标量对向量求导,标量对矩阵求导, 以及向量对向量求导这三种场景的基本求解思路。 对于本文中的标量对向量或矩阵求导这两种情况,如前文所说,以分母布局为默认布局。向量对向量求导 阅读全文
posted @ 2019-04-26 18:42 刘建平Pinard 阅读(42040) 评论(46) 推荐(19) 编辑
摘要:在之前写的上百篇机器学习博客中,不时会使用矩阵向量求导的方法来简化公式推演,但是并没有系统性的进行过讲解,因此让很多朋友迷惑矩阵向量求导的具体过程为什么会是这样的。这里准备用几篇博文来讨论下机器学习中的矩阵向量求导,今天是第一篇。 本系列主要参考文献为维基百科的Matrix Caculas和张贤达的 阅读全文
posted @ 2019-04-22 18:03 刘建平Pinard 阅读(66464) 评论(19) 推荐(53) 编辑

点击右上角即可分享
微信分享提示