levelDB跳表实现

跳表的原理就是利用随机性建立索引,加速搜索,并且简化代码实现难度。具体的跳表原理不再赘述,主要是看了levelDB有一些实现细节的东西,凸显自己写的实现不足之处。

  • 去除冗余的key

      template<typename Key, class Comparator>
      struct SkipList<Key,Comparator>::Node {
        explicit Node(const Key& k) : key(k) { }
    
        Key const key;
    
        // Accessors/mutators for links.  Wrapped in methods so we can
        // add the appropriate barriers as necessary.
        Node* Next(int n) {
          assert(n >= 0);
          // Use an 'acquire load' so that we observe a fully initialized
          // version of the returned Node.
          return reinterpret_cast<Node*>(next_[n].Acquire_Load());
        }
        void SetNext(int n, Node* x) {
          assert(n >= 0);
          // Use a 'release store' so that anybody who reads through this
          // pointer observes a fully initialized version of the inserted node.
          next_[n].Release_Store(x);
        }
    
        // No-barrier variants that can be safely used in a few locations.
        Node* NoBarrier_Next(int n) {
          assert(n >= 0);
          return reinterpret_cast<Node*>(next_[n].NoBarrier_Load());
        }
        void NoBarrier_SetNext(int n, Node* x) {
          assert(n >= 0);
          next_[n].NoBarrier_Store(x);
        }
    
       private:
        // Array of length equal to the node height.  next_[0] is lowest level link.
        port::AtomicPointer next_[1];
      };
    

    这里使用一个Node节点表示所有相同key,不同高度的节点集合,仅保留了key和不同高度的向右指针,并且使用NewNode来动态分配随即高度的向右指针集合,而next_就指向这指针集合。这也是c/c++ tricky的地方。

      #include <stdio.h>
      struct Node {
      	char str[1];
      };
      int main() {
      	char* mem = new char[4];
      	for (int i = 0; i < 4; i++) {
      		mem[i] = i + '0';
      	}	
      	Node* node = (Node*)mem;
      	char* const pstr = node->str;
      	for (int i = 0; i < 4; i++) {
      		printf("%c", pstr[i]);
      	}
      	return 0;
      }
    

    就像上面这个简单的sample,成员str可以作为指针指向从数组下标0开始的元素,并且不受申明时的限制,不局限于大小1,索引至分配的最大的内存地址。

  • 简易随机数生成

      uint32_t Next() {
          static const uint32_t M = 2147483647L;   // 2^31-1
          static const uint64_t A = 16807;  // bits 14, 8, 7, 5, 2, 1, 0
          // We are computing
          //       seed_ = (seed_ * A) % M,    where M = 2^31-1
          //
          // seed_ must not be zero or M, or else all subsequent computed values
          // will be zero or M respectively.  For all other values, seed_ will end
          // up cycling through every number in [1,M-1]
          uint64_t product = seed_ * A;
    
          // Compute (product % M) using the fact that ((x << 31) % M) == x.
          seed_ = static_cast<uint32_t>((product >> 31) + (product & M));
          // The first reduction may overflow by 1 bit, so we may need to
          // repeat.  mod == M is not possible; using > allows the faster
          // sign-bit-based test.
          if (seed_ > M) {
            seed_ -= M;
          }
          return seed_;
      }
    

    可以看到,他使用A和M对种子进行运算,达到一定数据范围内不会重复的数集,而里面对于(product % M),使用(product >> 31) + (product & M)进行运算优化,考虑右移和与操作的代价远小于取余操作。

  • 简洁清晰的私有帮助方法,帮助寻找小于指定key的节点

      template<typename Key, class Comparator>
      typename SkipList<Key,Comparator>::Node*
      SkipList<Key,Comparator>::FindLessThan(const Key& key) const {
        Node* x = head_;
        int level = GetMaxHeight() - 1;
        while (true) {
          assert(x == head_ || compare_(x->key, key) < 0);
          Node* next = x->Next(level);
          if (next == NULL || compare_(next->key, key) >= 0) {
            if (level == 0) {
              return x;
            } else {
              // Switch to next list
              level--;
      	  }
          } else {
            x = next;
          }
        }
      }
    
posted @ 2016-03-02 23:22  Srggggg  阅读(629)  评论(0编辑  收藏  举报