排序算法--归并算法(强分治)
1,对比 弱分治归并算法 vs 强分治归并算法
弱分治:
强分治:
强分治归并排序与弱分治排序的归并逻辑是一致的,只是在分治逻辑不同,
是通过递归的方式,将源数列层层切割,以下标middlle 为分界点,切割的逻辑图如上所示,逐步切成成长度为1的有序数列,然后再层层反向归并。
代码参考如下:
public class MergeArray { public static void main(String[] args) { int[] nums = { 13, 12,11,10,9,8,7,6,5,4,3,2,1}; System.out.println(Arrays.toString(nums)); sort(nums, 0, nums.length-1); System.out.println(Arrays.toString(nums)); } public static int[] sort(int[] nums, int low, int high){ int mid = (low+high)/2; if(low<high){ // 处理左边 sort(nums, low, mid); // 处理右边 sort(nums, mid+1, high); // 左右归并 merge(nums, low, mid, high); } return nums; } private static void merge(int[] nums, int low, int mid, int high) { int[] temp = new int[high-low+1]; int i = low; int j = mid+1; int k = 0; while(i<=mid && j<=high){ if(nums[i]<nums[j]) temp[k++] = nums[i++]; else temp[k++] = nums[j++]; } while(i<=mid){ temp[k++] = nums[i++]; } while(j<=high){ temp[k++] = nums[j++]; } for (int k2 = 0; k2 < temp.length; k2++) { nums[k2+low] = temp[k2]; } System.out.println(Arrays.toString(nums)); } }
关于分治时候,用到的递归思想,请参照 https://www.cnblogs.com/pickKnow/p/9560410.html
Aimer,c'est partager