利用pytorch的datasets在本地读取MNIST数据集进行分类

MNIST数据集下载地址:tensorflow-tutorial-samples/mnist/data_set at master · geektutu/tensorflow-tutorial-samples · GitHub

数据集存放和dataset的参数设置:

完整的MNIST分类代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
from torch.nn import Sequential
 
 
class Simple_CNN(nn.Module):
    def __init__(self):
        super(Simple_CNN, self).__init__()
 
        self.conv1 = Sequential(
            nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2)
        )
 
        self.conv2 = Sequential(
            nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2)
        )
 
        self.fc1 = Sequential(
            nn.Linear(7 * 7 * 128, 1024),
            nn.ReLU(),
            nn.Dropout(p=0.5),
            nn.Linear(1024, 256),
            nn.ReLU(),
            nn.Dropout(p=0.5),
        )
 
        self.fc2 = nn.Linear(256, 10)
 
    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = x.view(x.shape[0], -1)
        x = self.fc1(x)
        x = self.fc2(x)
        return x
 
 
def train(model, device, train_loader, test_loader, optimizer, criterion, epochs):
    # model.train()
    for epoch in range(epochs):
        model.train()
        for data, target in train_loader:
            data, target = data.to(device), target.to(device)
            optimizer.zero_grad()
            output = model(data)
            loss = criterion(output, target)
            loss.backward()
            optimizer.step()
        print(f'Epoch {epoch+1}, Loss: {loss.item()}')
        test(model, device, test_loader)
 
 
def test(model, device, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            test_loss += criterion(output, target).item()
            pred = output.argmax(dim=1, keepdim=True)
            correct += pred.eq(target.view_as(pred)).sum().item()
    test_loss /= len(test_loader.dataset)
    print(f'Test set: Average loss: {test_loss:.4f}, \
        Accuracy: {correct}/{len(test_loader.dataset)} ({100. * correct / len(test_loader.dataset):.0f}%)')
 
 
if __name__ == "__main__":
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 
    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.5,), (0.5,))
    ])
 
    train_dataset = datasets.MNIST(root='dataset/mnist/', train=True, download=True, transform=transform)
    test_dataset = datasets.MNIST(root='dataset/mnist/', train=False, download=True, transform=transform)
 
    train_loader = DataLoader(dataset=train_dataset, batch_size=64, shuffle=True)
    test_loader = DataLoader(dataset=test_dataset, batch_size=64, shuffle=False)
 
    model = Simple_CNN()
    model = model.to(device)
    optimizer = optim.Adam(model.parameters(), lr=0.001)
    criterion = nn.CrossEntropyLoss()
 
    epochs = 5
    train(model, device, train_loader, test_loader, optimizer, criterion, epochs)
    # test(model, device, test_loader)
    torch.save(model, 'model.pth')
    print('done')

实验结果:

 

posted @   Picassooo  阅读(299)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· Manus爆火,是硬核还是营销?
· 终于写完轮子一部分:tcp代理 了,记录一下
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 别再用vector<bool>了!Google高级工程师:这可能是STL最大的设计失误
· 单元测试从入门到精通
历史上的今天:
2022-10-12 转:论应该如何工作
点击右上角即可分享
微信分享提示