【论文笔记】2020WACV - Self-Attention Network for Skeleton-based Human Action Recognition

任务

action recognition

motivation

Both recurrent and convolutional operations are neighborhood-based local operations either in space or time; hence local-range information is repeatedly extracted and propagated to capture long-range dependencies. Many works have designed networks with hierarchical structure to obtain longer range and deeper semantic information but the problem still persists
if there are back and forth semantic dependencies. 

基本流程

先用全连接神经网络或者卷积神经网络把骨架节点的raw position and velocity sequences变成encoded features,再把encoded features放进自注意网络(self-atttion network, SAN)中处理。SAN有很多个版本,如下图所示

 

posted @   Picassooo  阅读(261)  评论(0编辑  收藏  举报
编辑推荐:
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
阅读排行:
· Manus爆火,是硬核还是营销?
· 终于写完轮子一部分:tcp代理 了,记录一下
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 别再用vector<bool>了!Google高级工程师:这可能是STL最大的设计失误
· 单元测试从入门到精通
点击右上角即可分享
微信分享提示