pytorch反向传播两次,梯度相加,retain_graph=True

pytorch是动态图计算机制,也就是说,每次正向传播时,pytorch会搭建一个计算图,loss.backward()之后,这个计算图的缓存会被释放掉,下一次正向传播时,pytorch会重新搭建一个计算图,如此循环。

在默认情况下,PyTorch每一次搭建的计算图只允许一次反向传播,如果要进行两次反向传播,则需要在第一次反向传播时设置retain_graph=True,即 loss.backwad(retain_graph=True) ,这样做可以保留动态计算图,在第二次反向传播时,将自动和第一次的梯度相加。

示例:

import torch

input_ = torch.tensor([[1., 2.], [3., 4.]], requires_grad=False)
w1 = torch.tensor(2.0, requires_grad=True)
w2 = torch.tensor(3.0, requires_grad=True)

l1 = input_ * w1
l2 = l1 + w2
loss1 = l2.mean()
loss1.backward(retain_graph=True)

print(w1.grad)  # 输出:tensor(2.5)
print(w2.grad)  # 输出:tensor(1.)

loss2 = l2.sum()
loss2.backward()

print(w1.grad)  # 输出:tensor(12.5)
print(w2.grad)  # 输出:tensor(5.)

示例中的梯度推导很简单,我在这篇博客里推了一下。从输出结果来看,程序确实是把两次的梯度加起来了。

附注:如果网络要进行两次反向传播,却没有用retain_graph=True,则运行时会报错:RuntimeError: Trying to backward through the graph a second time, but the buffers have already been freed. Specify retain_graph=True when calling backward the first time.

 

posted @ 2020-10-15 10:09  Picassooo  阅读(8186)  评论(0编辑  收藏  举报