论文笔记:Latent Multi-view Subspace Clustering
motivation
Existing works usually reconstruct the data points on the original view directly, and generate the individual subspace representation for each view. However, each single view alone is usually not sufficient to describe data points, which makes the reconstruction by using only one view itself risky. Moreover, the data collection may be noisy, which further increases the difficulty of clustering. To address these issues, this paper introduces a latent representation to explore the relationships among data points and handle the possible noise.
contribution
This work proposes a novel Latent Multi-view Subspace Clustering (LMSC) method, which clusters data points with latent representation and simultaneously explores underlying complementary information from multiple views.
Assumption
The proposed method assumes that multi-view observations are all originated from one underlying latent representation.
Algorithm
Objective function:
The first term is utilized to assure the learned latent representations H and reconstruction models P(v) associated to different views to be good for reconstructing the observations, while the second one penalizes the reconstruction error in the latent multi-view subspaces. The last term prevents the trivial solution by enforcing the subspace representation to be low-rank.
The above objective function can be solved by minimizing the following Augmented Lagrange Multiplier (ALM) problem
this problem is separated into 5 subproblems in order to optimize it with Alternat Direction Minimizing strategy.
experiment results and conclusions
Data sets: MSRCV1, Scene-15, ORL, LandUse-21, Still DB, BBCSport.
- With the help of multiple views the proposed method achieves much more promising results compared with the result that only using single view.
-
In a big picture, the proposed approach outperforms all the baselines with a large margin.
论文信息
Zhang C , Hu Q , Fu H , et al. Latent Multi-view Subspace Clustering[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017.
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· Manus爆火,是硬核还是营销?
· 终于写完轮子一部分:tcp代理 了,记录一下
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 别再用vector<bool>了!Google高级工程师:这可能是STL最大的设计失误
· 单元测试从入门到精通