PyTorch: .add()和.add_(),.mul()和.mul_(),.exp()和.exp_()

.add()和.add_()

.add()和.add_()都能把两个张量加起来,但.add_是in-place操作,比如x.add_(y),x+y的结果会存储到原来的x中。Torch里面所有带"_"的操作,都是in-place的。

.mul()和.mul_()

x.mul(y)或x.mul_(y)实现把x和y点对点相乘,其中x.mul_(y)是in-place操作,会把相乘的结果存储到x中。值得注意的是,x必须是tensor, y可以是tensor,也可以是数。

.exp()和.exp_()

.exp()和.exp_()都能实现以e为底的指数,区别是.exp_()是in-place操作。

posted @   Picassooo  阅读(21121)  评论(0编辑  收藏  举报
编辑推荐:
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
阅读排行:
· Manus爆火,是硬核还是营销?
· 终于写完轮子一部分:tcp代理 了,记录一下
· 别再用vector<bool>了!Google高级工程师:这可能是STL最大的设计失误
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 单元测试从入门到精通
点击右上角即可分享
微信分享提示