spark + cassandra +postgres +codis 大数据方案

1、环境:

1.1、cassandra 集群: 用于日志数据存储

1.2、spark集群: 用户后期的实时计算及批处理

1.3、codis 集群: 用于缓存一些基本数据如IP归属地,IP经纬度等,当日志上来,对日志进行补全

1.4、postgres数据库: 1、用于存储维度表 2、存储统计结果

1.5、消息队列 如:rabbitmq、apollo 或者kafka,用于接收产品日志数据。当日志数据低于5000条/s时,可以考虑使用rabbitmq。高于此值。建议换成apollo或者kafka。消息队列不建议留太长时间的数据,建议保留时间:15天~1月

部署说明:

spark 和cassandra 采用一对一部署,以保证后期计算时的数据本地性

codis集群:视具体情况而定,建议不少于3组,每组2个节点

postgres:开启自动vacuum

2、数据收集

日志数据直接发送到消息队列(可以考虑在消息队列前加上Nginx)。

3、数据补全与拆分 外加原始数据存储

使用日志数据时,我们可能会有一些期望,比如,

A: 后期需要按区域进行产品统计,热力图。这时可以将IP地址解析为国家、省、市、和经纬度。

B: 日志需要分发不同部门,日志记录需要唯一标识 如:添加长整型日期戳+进程标识

数据进行补全后,A:根据产品等拆分成topic后,扔回队列,供实时计算,B:并存储一份到cassandra作为原始数据,同时供离线计算

4、实时计算

spark streaming 根据需要,订阅topic,进行实时计算

5、数据仓库

根据实际业务,订阅拆分后的topic,生成数据仓库。维度表放在postgres中,事实表放在Cassandra中.

请注意以下几点:

A、维度表

  A1:采用Long作为主键,以增快后期Join效率。

  A2:同时为避免过于频繁读写关系数据库,可以使用codis缓存维度数据,设置ttl,如8小时。

B、事实数据,切忌放在关系数据库中。过于频繁的读写操作会对关系数据库造成过大压力。

C、如果精力、资源有限,可以先对核心日志类型做数据仓库,比如,订单。至于客户点击、浏览历史可以之后再做。

6、离线计算

6.1 spark 作业可以读取Cassandra中的原始数据,进行历史数据的离线计算。详见spark cassandra connector的使用

6.2 每日对事实表进行简单聚合后,与维度表进行join,join后的数据另外存储。供核心业务使用。

  6.2.1 由于每日join,刚好按日做了缓慢变化。若需要进行历史统计可以直接用。若需要按照最新维度信息对历史数据进行统计,各个业务自行与维度表join

  6.2.2 由于事实表join个所有维度表,字段比较多。但是实际使用时,各个业务只会取其中的十个八个字段,甚至更少,此时,强烈建议使用列存储,并启用压缩。

     建议使用parquet存储(详见:为什么我们使用parquet),而不用rc或者orc file,原因1:spark 原生支持parquet。原因2:即使你用hive,hive也完全支持parquet

7、计算结果

选择计算结果的存储位置,需要事先预估结果的记录数。切勿只考虑一天,至少要考虑一年。以每年3000W为门坎,

若小于3000W,可以考虑存储到关系数据库。

若大于3000W,需要使用NOSQL数据库。您可以选择cassandra、hbase、mongodb等

8、结果展现

结果展现时,请考虑以下因素

数据导出:大数据的计算结果未必会是小数据,因此数据导出一定要分页。在第7步选择哪种NOSQL,要先调研好分页实现。

可视化展现:千里之堤,溃于蚁穴。数据已经计算出来了,一定要在展现上把数据的价值体现出来。可以考虑使用折线图、柱状图、饼图、热力图、地图等,推荐使用Echarts

 

posted on 2016-05-07 20:00  zhangxuhui  阅读(2121)  评论(0编辑  收藏  举报