Hadoop小小笔记

>> 偶遇JobClient

这两年在在整一个云计算的东西,但工作主要集中在Client端。

对Hadoop早有耳闻,但一直没有机会,前几天看到了JobClient这个熟悉的字眼,所以就把Hadoop的源代码拖来,找个机会看看。倒不是想用Hadoop干什么事情,了解了解,免得“云深不知处”。

虽然Hadoop是用Java开发的,但问题不大,基本上能看懂。Hadoop当然是博大精深,包含了conf/DFS/io/ipc/MapReduce几个部分,但我也只是挑了MapReduce的代码作为观摩对象:

感兴趣的文件夹:

...\src\mapred\org\apache\hadoop\mapred

...\src\mapred\org\apache\hadoop\mapreduce

感兴趣的类:

JobTracker/TaskTracker/

JobID/JobProfile/JobContext

JobInProgress/TaskInProgress/MapTask/ReduceTask

JobHistory/JobHistoryServer

 

>> 关于MapReduce

MapReduce模型隐藏了并行化,容错,位置优化和负载均衡的细节,使用起来比较简洁。

 1. MapReduce == Map -> Combine -> Reduce

Map-Reduce框架的运作完全基于<key,value>对,也就是说数据的输入是一批<key,value>对,生成的结果也是一批<key,value>对,只是有时候它们的类型不一样而已。

由于Keyvalue的类需要支持被序列化操作,它们必须要实现Writable接口。此外,key的类还必须实现WritableComparable接口,以便可以让框架对数据集的执行排序操作。

一个Map-Reduce任务的执行过程以及数据输入输出的类型如下所示:

(input)<k1,v1> -> map -> <k2,v2> -> combine -> <k2,v2> -> reduce -> <k3,v3>(output)

 

 2. 例子: WordCount 1.0

MapReduce Tutorial中有一个WordCount的例子,要求从读取两个文本文件并计算文本中每个单词的总数。

 

源代码:

package org.myorg;  

import java.io.IOException;
import java.util.*;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
import org.apache.hadoop.util.*;

public class WordCount {

// Mapper之Map方法
public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
output.collect(word, one);
}
}
}

// Reducer之Reduce方法
public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
int sum = 0;
while (values.hasNext()) {
sum += values.next().get();
}
output.collect(key, new IntWritable(sum));
}
}

public static void main(String[] args) throws Exception {
// Job Configuraion
JobConf conf = new JobConf(WordCount.class);
conf.setJobName("wordcount");

conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);

// 设置Mapper/Combiner/Reducer
conf.setMapperClass(Map.class);
conf.setCombinerClass(Reduce.class);
conf.setReducerClass(Reduce.class);

// 设置输入/输出的格式,此处均为Text
conf.setInputFormat(TextInputFormat.class);
conf.setOutputFormat(TextOutputFormat.class);

FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));

// 运行Job
JobClient.runJob(conf);
}
}

 

Inputs(file01 & file02):

-------------------------------------------------------------------

../wordcount/input/file01    Hello World Bye World
../wordcount/input/file02:     Hello Hadoop Goodbye Hadoop

-------------------------------------------------------------------

Output:

------------------

    Bye 1
    Goodbye 1
    Hadoop 2
    Hello 2
    World 2

------------------

 

Workflow:

Step1: Mapper

Mapper通过map方法每次处理一行文本,然后利用StringTokenizer将其分离成Tokens,然后就将键值对< <word>, 1>输出,它将作为Combine的输入。

----------------------------

the first map emits:
< Hello, 1>
< World, 1>
< Bye, 1>
< World, 1>

The second map emits:
< Hello, 1>
< Hadoop, 1>
< Goodbye, 1>
< Hadoop, 1>

-----------------------------

Step2: Combine

在WordCount这个例子中,Combiner与Reducer是一样的,Combiner类负责将相同key的值合并起来

----------------------------------

The output of the first map:
< Bye, 1>
< Hello, 1>
< World, 2>

The output of the second map:
< Goodbye, 1>
< Hadoop, 2>
< Hello, 1>

 ----------------------------------

Step3: Reduce

Reducer类通过reduce方法,计算每个单词的总数,从而得到最终的输出。

-----------------------------------

Thus the output of the job is:
< Bye, 1>
< Goodbye, 1>
< Hadoop, 2>
< Hello, 2>
< World, 2>

-----------------------------------

 

>> MapReduce Architecture

--------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------

 

>> JobClient

每一个job都会在用户端通过JobClient类将应用程序以及配置参数Configuration打包成jar文件存储在HDFS,并把路径提交到 JobTracker的master服务,然后由master创建每一个Task(即MapTask和ReduceTask)将它们分发到各个 TaskTracker服务中去执行。

Methods:

JobClient.runJob()

JobClient.submitJob

JobClient.killJob()

 

>> JobTracker

它们都是由一个master服务JobTracker和多个运行于多个节点的slaver服务TaskTracker两个类提供的服务调度的。 master负责调度job的每一个子任务task运行于slave上,并监控它们,如果发现有失败的task就重新运行它,slave则负责直接执行每 一个task。TaskTracker都需要运行在HDFS的DataNode上,而JobTracker则不需要,一般情况应该把JobTracker 部署在单独的机器上。

JobTracker is a daemon per pool that administers all aspects of mapred activities.

JobTracker keeps all the current jobs by containing instances of JobInProgress.

Methods:

JobTracker.submitJob(): creates/adds a JobInProgress to jobs and jobsByArrival

JobTracker.pollForNewTask()

 

>> JobInProgress/TaskInProgress

 JobInProgress represents a job as it is being tracked by JobTracker.

 TaskInProgress represents a set of tasks for a given unique input, where input is a split for map task or a partition for reduce task.

 

>> MapTask/ReduceTask:
MapTask offers method run() that calls MapRunner.run(), which in turn calls the user-supplied Mapper.map().
ReduceTask offers run() that sorts input files using SequenceFile.Sorter.sort(), and then calls user-supplied Reducer.reduce().

 

>> 其他

Hadoop的Task Recovery机制还是比较有意思的,它可以重新尝试运行失败的Task,具体可以看看JobTracker.RecoveryManager。

 

// I should borrow some concept of Hadoop to SolidMCP
//    RunningJob
//    Reporter
//    JobClient
//    JobHistory.HistoryCleaner
//    JobHistory.JobInfo
//    JobHistory.Listener
//    JobProfile
//    TaskReport
//    TaskTracker
//    TaskLog
//    JobQueueInfo
//    JobContext
//    JobEndNotifier
//    JobControl

 

References:

http://wiki.apache.org/hadoop/HadoopMapRedClasses

http://sebug.net/paper/databases/nosql/Nosql.html

 

posted on 2012-01-31 10:30  飘行天下  阅读(373)  评论(0编辑  收藏  举报

导航