边连通分量
\(\href{https://www.acwing.com/solution/content/20697/}{边连通分量}\)
\(本题是等价于加入最少边是整个图变成边连通分量(没有桥)\)
#include <bits/stdc++.h>
using namespace std;
#define IO ios::sync_with_stdio(false);cin.tie(0); cout.tie(0)
inline int lowbit(int x) { return x & (-x); }
#define ll long long
#define pb push_back
#define PII pair<int, int>
#define x first
#define y second
#define inf 0x3f3f3f3f
const int N = 5010, M = 200010;
int n, m;
int h[N], e[M], ne[M], idx;
int dfn[N], low[N], timestamp;
int stk[N], top;
int id[N], dcc_cnt;
bool is_bridge[M];
int d[N];
void add(int a, int b) {
e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}
void tarjan(int u, int from) {
dfn[u] = low[u] = ++timestamp;
stk[++top] = u;
for (int i = h[u]; ~i; i = ne[i]) {
int j = e[i];
if (!dfn[j]) {
tarjan(j, i);
low[u] = min(low[u], low[j]);
if (dfn[u] < low[j])
is_bridge[i] = is_bridge[i ^ 1] = true;
}
else if (i != (from ^ 1))
low[u] = min(low[u], dfn[j]);
}
if (dfn[u] == low[u]) {
++dcc_cnt;
int y;
do {
y = stk[top--];
id[y] = dcc_cnt;
} while (y != u);
}
}
int main() {
IO;
cin >> n >> m;
memset(h, -1, sizeof h);
while (m--) {
int a, b;
cin >> a >> b;
add(a, b), add(b, a);
}
tarjan(1, -1);
for (int i = 0; i < idx; ++i)
if (is_bridge[i])
d[id[e[i]]]++;
int cnt = 0;
for (int i = 1; i <= dcc_cnt; ++i)
if (d[i] == 1) cnt++;
cout << (cnt + 1) / 2 << '\n';
return 0;
}