Lca - Tarjan

\(Tarjan\ O(m + n)\)

\(Tarjan为离线算法\)

  • \(在线做法:边读边做\)
  • \(离线做法:先读完,再全部处理,最后全部输出\)

\(Tarjan本质上是对向上标记法的优化,首先任取一个点当成根节点向下做dfs,并将所有节点分为三部分\)

  • \(已经遍历并完成了回溯的点标记为2\)
  • \(正在遍历还未回溯的点标记为1\)
  • \(未遍历的标记为0\)

\(做法:在回溯的时候更新当前点的祖先,并可计算该点与已经标记为2的距离\)

\(dist[u] + dist[y] - dist[anc] * 2\)

距离

#include <bits/stdc++.h>
using namespace std;
#define IO ios::sync_with_stdio(false);cin.tie(0); cout.tie(0)
inline int lowbit(int x) { return x & (-x); }
#define ll long long
#define pb push_back
#define PII pair<int, int>
#define x first
#define y second
#define inf 0x3f3f3f3f
const int N = 10010, M = N * 2;
int n, m;
int h[N], e[M], w[M], ne[M], idx;
int dist[N];
int p[N];
int res[M];
int st[N];
vector<PII> query[N];

void add(int a, int b, int c) {
    e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx++;
}

void dfs(int u, int fa) {
    for (int i = h[u]; ~i; i = ne[i]) {
        int j = e[i];
        if (j == fa) continue;
        dist[j] = dist[u] + w[i];
        dfs(j, u);
    }
}

int find(int x) {
    if (p[x] != x) p[x] = find(p[x]);
    return p[x];
}

void tarjan(int u) {
    st[u] = 1;
    for (int i = h[u]; ~i; i = ne[i]) {
        int j = e[i];
        if (!st[j]) {
            tarjan(j);
            p[j] = u;
        }
    }
    for (auto it : query[u]) {
        int y = it.x,  id = it.y;
        if (st[y] == 2) {
            int anc = find(y);
            res[id] = dist[u] + dist[y] - dist[anc] * 2;
        }
    }
    st[u] = 2;
}


int main() {
    IO;
    cin >> n >> m;
    memset(h, -1, sizeof h);
    for (int i = 0; i < n - 1; ++i) {
        int a, b, c;
        cin >> a >> b >> c;
        add(a, b, c), add(b, a, c);
    }
    for (int i = 0; i < m; ++i) {
        int a, b;
        cin >> a >> b;
        if (a != b) {
            query[a].pb({b, i});
            query[b].pb({a, i});
        }
    }
    for (int i = 1; i <= n; ++i) p[i] = i;
    dfs(1, -1);
    tarjan(1);
    for (int i = 0; i < m; ++i) cout << res[i] << '\n';
    return 0;
}
posted @ 2021-02-18 21:45  phr2000  阅读(81)  评论(0编辑  收藏  举报