Lca
最近公共祖先
\((1)向上标记法\ O(n)\)
\((2)倍增:fa[i,j]表示从i开始,向上走2^j步所能走到的节点,0 \le j\le log_2n,depth[i]表示深度\)
\(步骤\)
- \(先将两个点跳到同一层\)
- \(让两个点同时往上跳,一直跳到它们的最近公共祖先的下一层\)
- \(预处理\ O(nlogn)\)
- \(查询\ O(logn)\)
\(下面是一道裸题:\)祖先询问
#include <bits/stdc++.h>
using namespace std;
#define IO ios::sync_with_stdio(false);cin.tie(0); cout.tie(0)
inline int lowbit(int x) { return x & (-x); }
#define ll long long
#define pb push_back
#define PII pair<int, int>
#define x first
#define y second
#define inf 0x3f3f3f3f
const int N = 40010, M = N * 2;
int n, m;
int h[N], e[M], w[M], ne[M], idx;
int depth[N], fa[N][16];
int q[N];
void add(int a, int b) {
e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}
void bfs(int root) {
memset(depth, 0x3f, sizeof depth);
depth[0] = 0, depth[root] = 1;//哨兵
int hh = 0, tt = 0;
q[0] = root;
while (hh <= tt) {
int t = q[hh++];
for (int i = h[t]; ~i; i = ne[i]) {
int j = e[i];
if (depth[j] > depth[t] + 1) {
depth[j] = depth[t] + 1;
q[++tt] = j;
fa[j][0] = t;
for (int k = 1; k <= 15; ++k)
fa[j][k] = fa[fa[j][k - 1]][k - 1]; // 这里体现了倍增
}
}
}
}
int lca(int a, int b) {
if (depth[a] < depth[b]) swap(a, b);
for (int k = 15; k >= 0; --k) // 做完这一步循环保证depth[a] >= depth[b]
if (depth[fa[a][k]] >= depth[b])
a = fa[a][k];
if (a == b) return a;
for (int k = 15; k >= 0; --k) // depth[a] 时刻保证 >= depth[b]
if (fa[a][k] != fa[b][k]) {
a = fa[a][k];
b = fa[b][k];
}
return fa[a][0];
}
int main() {
IO;
int n;
cin >> n;
int root = 0;
memset(h, -1, sizeof h);
for (int i = 0; i < n; ++i) {
int a, b;
cin >> a >> b;
if (b == -1) root = a;
else add(a, b), add(b, a);
}
bfs(root);
cin >> m;
while (m--) {
int a, b;
cin >> a >> b;
int p = lca(a, b);
if (p == a) puts("1");
else if (p == b) puts("2");
else puts("0");
}
return 0;
}