差分约束 : 糖果
分析
\(要求糖果的最小值,应该把不等式处理成x_i \ge x_j+c的形式,求最长路.\)
约束关系
- \(x_i \ge 1\)
- \(x_i\ge x_0+1\)
- \(x_0=0\)
\(当负环导致TLE,可以尝试将queue换成stack.\)
#include <bits/stdc++.h>
using namespace std;
#define IO ios::sync_with_stdio(false);cin.tie(0); cout.tie(0)
inline int lowbit(int x) { return x & (-x); }
#define ll long long
#define pb push_back
#define PII pair<int, int>
#define x first
#define y second
#define inf 0x3f3f3f3f
const int N = 1e5 + 7, M = 3e5 + 7;
int n, m;
int h[N], e[M], w[M], ne[M], idx;
ll dist[N];
int q[N], cnt[N];
bool st[N];
void add(int a, int b, int c) {
e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx++;
}
bool spfa() {
memset(dist, -0x3f, sizeof dist);
dist[0] = 0;
int hh = 0, tt = 1;
q[0] = 0;
st[0] = true;
while (hh != tt) {
int t = q[--tt];
st[t] = false;
for (int i = h[t]; ~i; i = ne[i]) {
int j = e[i];
if (dist[j] < dist[t] + w[i]) {
dist[j] = dist[t] + w[i];
cnt[j] += 1;
if (cnt[j] >= n + 1) return false;
if (!st[j]) {
q[tt++] = j;
st[j] = true;
}
}
}
}
return true;
}
int main() {
IO;
cin >> n >> m;
memset(h, -1, sizeof h);
while (m--) {
int x, a, b;
cin >> x >> a >> b;
if (x == 1) add(b, a, 0), add(a, b, 0);
else if (x == 2) add(a, b, 1); //b >= a + 1
else if (x == 3) add(b, a, 0);
else if (x == 4) add(b, a, 1);
else add(a, b, 0);
}
for (int i = 1; i <= n; ++i) add(0, i, 1); //xi >= x0 + 1, x0 = 0
if (!spfa()) puts("-1");
else {
ll res = 0;
for (int i = 1; i <= n; ++i) res += dist[i];
cout << res << '\n';
}
}