负环
\(本题为裸题\)
求负环
\(基于spfa\)
- \((1)统计每个点入队的次数,如果某个点入队n次,则说明存在负环.\)
- \((2)统计每个点的最短路中所包含的边数,如果某点的最短路所包含的边数大于等于n,\\则也说明存在负环.\\\)
\(对于求负环是否存在,dist的初始化是无所谓的.\)
#include <bits/stdc++.h>
using namespace std;
#define IO ios::sync_with_stdio(false);cin.tie(0); cout.tie(0)
inline int lowbit(int x) { return x & (-x); }
#define ll long long
#define pb push_back
#define PII pair<int, int>
#define x first
#define y second
#define inf 0x3f3f3f3f
const int N = 510, M = 5210;
int n, m1, m2;
int h[N], e[M], w[M], ne[M], idx;
int dist[N];
int q[N], cnt[N];
bool st[N];
void add(int a, int b, int c) {
e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx++;
}
bool spfa() {
memset(cnt, 0, sizeof cnt);
memset(st, 0, sizeof st);
int hh = 0, tt = 0;
for (int i = 1; i <= n; ++i) {
q[tt++] = i;
st[i] = 1;
}
while (hh != tt) {
int t = q[hh++];
if (hh == N) hh = 0;
st[t] = false;
for (int i = h[t]; ~i; i = ne[i]) {
int j = e[i];
if (dist[j] > dist[t] + w[i]) {
dist[j] = dist[t] + w[i];
cnt[j] += 1;
if (cnt[j] >= n) return true;
if (!st[j]) {
q[tt++] = j;
if (tt == N) tt = 0;
st[j] = true;
}
}
}
}
return false;
}
int main() {
IO;
int _;
cin >> _;
while (_--) {
cin >> n >> m1 >> m2;
memset(h, -1, sizeof h);
idx = 0;
for (int i = 0; i < m1; ++i) {
int a, b, c;
cin >> a >> b >> c;
add(a, b, c), add(b, a, c);
}
for (int i = 0; i < m2; ++i) {
int a, b, c;
cin >> a >> b >> c;
add(a, b, -c);
}
if (spfa()) puts("YES");
else puts("NO");
}
return 0;
}