mahout算法源码分析之Itembased Collaborative Filtering(一)PreparePreferenceMatrixJob

Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit。

本篇分析RecommenderJob的源码,这个类也是继承了AbstractJob,所以也会覆写其run方法,点开这个run方法,可以看到和其他的job类都一样,刚开始都是基本参数的默认值设置和获取;然后到了第一个job,在这个job之前有一个shouldRunNextPhase()函数,点开这个函数看到下面的源码:

 

protected static boolean shouldRunNextPhase(Map<String, List<String>> args, AtomicInteger currentPhase) {
    int phase = currentPhase.getAndIncrement();
    String startPhase = getOption(args, "--startPhase");
    String endPhase = getOption(args, "--endPhase");
    boolean phaseSkipped = (startPhase != null && phase < Integer.parseInt(startPhase))
        || (endPhase != null && phase > Integer.parseInt(endPhase));
    if (phaseSkipped) {
      log.info("Skipping phase {}", phase);
    }
    return !phaseSkipped;
  }

其中phase是获取当前的phase值的,关于phase的相关概念可以参考: mahout中phase的含义,这里可以看到主要是根据phase和startPhase、endPhase的值做比较,然后返回true或者false,因为在实战中是按默认值的(startPhase和endPhase都没有设置),所以RecommenderJob中的这个函数都是返回true的。

 

看第一个job的调用:

 

if (shouldRunNextPhase(parsedArgs, currentPhase)) {
      ToolRunner.run(getConf(), new PreparePreferenceMatrixJob(), new String[]{
              "--input", getInputPath().toString(),
              "--output", prepPath.toString(),
              "--maxPrefsPerUser", String.valueOf(maxPrefsPerUserInItemSimilarity),
              "--minPrefsPerUser", String.valueOf(minPrefsPerUser),
              "--booleanData", String.valueOf(booleanData),
              "--tempDir", getTempPath().toString()});

      numberOfUsers = HadoopUtil.readInt(new Path(prepPath, PreparePreferenceMatrixJob.NUM_USERS), getConf());
    }

这里看到调用的job主类是PreparePreferenceMatrixJob,然后这个job的输入参数有输入、出、maxPrefsPerUser、minPrefsPerUser、booleanData、tempDir。那么就打开主类PreparePreferenceMatrixJob,来看看。这个PreparePreferenceMatrixJob同样实现了AbstractJob类,那么直接看run方法吧。在run中的参数设置里有一个ratingShift,这个在调用的时候没有使用,所以按照默认,设置为0.0。大致浏览一下发现一共有三个prepareJob,所以这个主类会产生3个job。下面来一个个来看:

 

(1)//convert items to an internal index

 

Job itemIDIndex = prepareJob(getInputPath(), getOutputPath(ITEMID_INDEX), TextInputFormat.class,
            ItemIDIndexMapper.class, VarIntWritable.class, VarLongWritable.class, ItemIDIndexReducer.class,
            VarIntWritable.class, VarLongWritable.class, SequenceFileOutputFormat.class);

 

输入格式:userid,itemid,value

先看mapper:

 

protected void map(LongWritable key,
                     Text value,
                     Context context) throws IOException, InterruptedException {
    String[] tokens = TasteHadoopUtils.splitPrefTokens(value.toString());
    long itemID = Long.parseLong(tokens[transpose ? 0 : 1]);
    int index = TasteHadoopUtils.idToIndex(itemID);
    context.write(new VarIntWritable(index), new VarLongWritable(itemID));
  }

在map中,首先获得itemID,在tokens中tokens[1]即是itemID了,至于当transpose为true的时候就要选择tokens[0]作为itemID这个应该是其他的应用吧,由于在调用的时候没有设置这个参数,所以这里按照默认值为false,所以选择tokens[1]作为itemID。然后看到index和itemID的转换使用的是TasteHadoopUtils.idToIndex()函数,看到这个函数返回的是return 0x7FFFFFFF & Longs.hashCode(id);所以当这个数在int可以表示的数范围内(小于2147483647)时候就会返回这个数本身了,比如实战中的项目101,返回的index也是101。

再看reducer:

 

 

protected void reduce(VarIntWritable index,
                        Iterable<VarLongWritable> possibleItemIDs,
                        Context context) throws IOException, InterruptedException {
    long minimumItemID = Long.MAX_VALUE;
    for (VarLongWritable varLongWritable : possibleItemIDs) {
      long itemID = varLongWritable.get();
      if (itemID < minimumItemID) {
        minimumItemID = itemID;
      }
    }
    if (minimumItemID != Long.MAX_VALUE) {
      context.write(index, new VarLongWritable(minimumItemID));
    }
  }

总感觉这里没啥必要,reducer返回的还是101-->101,或者这里应该有什么说法的?

 

输出文件是ITEMID_INDEX,输出格式<key,value>   :   VarintWritable-->VarLongWritable  

所以这个job就分析完了。

(2)//convert user preferences into a vector per user

 

Job toUserVectors = prepareJob(getInputPath(), getOutputPath(USER_VECTORS), TextInputFormat.class,
            ToItemPrefsMapper.class, VarLongWritable.class, booleanData ? VarLongWritable.class : EntityPrefWritable.class,
            ToUserVectorsReducer.class, VarLongWritable.class, VectorWritable.class, SequenceFileOutputFormat.class);

 

输入格式:userid,itemid,value

看mapper:(ToItemPrefsMapper继承ToEntityPrefsMapper,而ToItemPrefsMapper是空的,所以看ToEntityPrefsMapper)

 

public void map(LongWritable key,
                  Text value,
                  Context context) throws IOException, InterruptedException {
    String[] tokens = DELIMITER.split(value.toString());
    long userID = Long.parseLong(tokens[0]);
    long itemID = Long.parseLong(tokens[1]);
    if (itemKey ^ transpose) {
      // If using items as keys, and not transposing items and users, then users are items!
      // Or if not using items as keys (users are, as usual), but transposing items and users,
      // then users are items! Confused?
      long temp = userID;
      userID = itemID;
      itemID = temp;
    }
    if (booleanData) {
      context.write(new VarLongWritable(userID), new VarLongWritable(itemID));
    } else {
      float prefValue = tokens.length > 2 ? Float.parseFloat(tokens[2]) + ratingShift : 1.0f;
      context.write(new VarLongWritable(userID), new EntityPrefWritable(itemID, prefValue));
    }
  }

这么些代码,最主要的就是最后两句了,一句是求评分值,但是这里的加上ratingShift不知道是干啥的?虽然ratingShift是0.0。最后输出就是userID-->[itemID,prefValue]

 

再看reducer:

 

protected void reduce(VarLongWritable userID,
                        Iterable<VarLongWritable> itemPrefs,
                        Context context) throws IOException, InterruptedException {
    Vector userVector = new RandomAccessSparseVector(Integer.MAX_VALUE, 100);
    for (VarLongWritable itemPref : itemPrefs) {
      int index = TasteHadoopUtils.idToIndex(itemPref.get());
      float value = itemPref instanceof EntityPrefWritable ? ((EntityPrefWritable) itemPref).getPrefValue() : 1.0f;
      userVector.set(index, value);
    }

    if (userVector.getNumNondefaultElements() >= minPreferences) {
      VectorWritable vw = new VectorWritable(userVector);
      vw.setWritesLaxPrecision(true);
      context.getCounter(Counters.USERS).increment(1);
      context.write(userID, vw);
    }
  }

首先说下为啥mapper输出的value是EntityPrefWritable,但是这里的Iterable接收的时候使用的是VarLongWritable,因为前者继承后者。然后就是用户所有的评分都写入一个vecotr,使用itemid作为vector的下标,prefValue作为值;最后判断一下,如果vector含有的item个数大于或等于minPreference(这里看出这个参数的意义了吧)就输出,否则不输出。另外,就是设置了一个Counters.USERS计数器,用来统计用户的个数。

 

这个job的输出为:USER_VECTORS,格式为:<key,value>   :   userid-->vector[itemid:prefValue,itemid:prefValue,...]

随后代码获得了用户的个数:

 

int numberOfUsers = (int) toUserVectors.getCounters().findCounter(ToUserVectorsReducer.Counters.USERS).getValue();
    HadoopUtil.writeInt(numberOfUsers, getOutputPath(NUM_USERS), getConf());

 

(3)//build the rating matrix

 

Job toItemVectors = prepareJob(getOutputPath(USER_VECTORS), getOutputPath(RATING_MATRIX),
            ToItemVectorsMapper.class, IntWritable.class, VectorWritable.class, ToItemVectorsReducer.class,
            IntWritable.class, VectorWritable.class);

输入是第二个job的输出,格式为:<key,value>   :  userid-->vector[itemid:prefValue,itemid:prefValue,...]

 

先看mapper:

 

protected void map(VarLongWritable rowIndex, VectorWritable vectorWritable, Context ctx)
      throws IOException, InterruptedException {
    Vector userRatings = vectorWritable.get();

    int numElementsBeforeSampling = userRatings.getNumNondefaultElements();
    userRatings = Vectors.maybeSample(userRatings, sampleSize);
    int numElementsAfterSampling = userRatings.getNumNondefaultElements();

    int column = TasteHadoopUtils.idToIndex(rowIndex.get());
    VectorWritable itemVector = new VectorWritable(new RandomAccessSparseVector(Integer.MAX_VALUE, 1));
    itemVector.setWritesLaxPrecision(true);

    Iterator<Vector.Element> iterator = userRatings.iterateNonZero();
    while (iterator.hasNext()) {
      Vector.Element elem = iterator.next();
      itemVector.get().setQuick(column, elem.get());
      ctx.write(new IntWritable(elem.index()), itemVector);
    }

    ctx.getCounter(Elements.USER_RATINGS_USED).increment(numElementsAfterSampling);
    ctx.getCounter(Elements.USER_RATINGS_NEGLECTED).increment(numElementsBeforeSampling - numElementsAfterSampling);
  }

其中的userRatings = Vectors.maybeSample(userRatings, sampleSize);函数,由于sampleSize没有设置,所以取到的数是Integer的最大值,那么maybeSample就会返回原始值,vector中的非默认项的个数肯定是小于Integer的最大值的:

 

 

public static Vector maybeSample(Vector original, int sampleSize) {
    if (original.getNumNondefaultElements() <= sampleSize) {
      return original;
    }
    Vector sample = original.like();
    Iterator<Vector.Element> sampledElements =
        new FixedSizeSamplingIterator<Vector.Element>(sampleSize, original.iterateNonZero());
    while (sampledElements.hasNext()) {
      Vector.Element elem = sampledElements.next();
      sample.setQuick(elem.index(), elem.get());
    }
    return sample;
  }

map函数中column就是userid,然后输出是elem.index()就是itemID,而itemVector.get().setQuick(column, elem.get())其实就是设置itemVecotor为[userID:prefValue]的格式,这样的话mapper输出就是 itemID-->vector[userID:prefValue];同时还有两个计数器,因为numElementsBeforeSampling - numElementsAfterSampling=0,所以计数器Elements.USER_RATINGS_NEGLECTED就一直是零。

 

再看reducer:

  

protected void reduce(IntWritable row, Iterable<VectorWritable> vectors, Context ctx)
      throws IOException, InterruptedException {
    VectorWritable vectorWritable = VectorWritable.merge(vectors.iterator());
    vectorWritable.setWritesLaxPrecision(true);
    ctx.write(row, vectorWritable);
  }

merge函数就是把mapper的输出变换成下面的形式:itemID-->vector[userID:prefValue,userID:prefVlaue,...];

 

所以这个job的输出是:RATING_MATRIX,格式为:<key,value>   :   itemID-->vector[userID:prefValue,userID:prefVlaue,...];

额 ,好吧,那个sampleSize是有值的,而非默认的Integer的最大值:

 

if (hasOption("maxPrefsPerUser")) {
      int samplingSize = Integer.parseInt(getOption("maxPrefsPerUser"));
      toItemVectors.getConfiguration().setInt(ToItemVectorsMapper.SAMPLE_SIZE, samplingSize);
    }

这个值也是可以设置的,所以现在你知道maxPrefsPerUser的值的用处了。但是这个值的默认是100,实战总的item才7,所以numElementsBeforeSampling - numElementsAfterSampling=0不变。

 

好了,这个job也分析完了。


分享,成长,快乐

转载请注明blog地址:http://blog.csdn.net/fansy1990



posted on 2013-10-11 14:20  云编程的梦  阅读(229)  评论(0编辑  收藏  举报

导航