图像人脸检测+人眼检测 (opencv + c++)

摘要:实现图像中人脸检测,和人眼定位。输出检测标记图像和定位坐标。

工具:vs2015  opencv3  C++

资源:haarcascade_frontalface_alt2.xml;haarcascade_eye_tree_eyeglasses.xml

链接:https://pan.baidu.com/s/1uk8P1TF7XXCoMMd0sNDGVg
提取码:az01

实现结果:

 

实现过程:

Detect.h

 1 #pragma once
 2 #include <opencv2/opencv.hpp>
 3 #include <opencv2/highgui/highgui.hpp>
 4 #include <opencv2/core/core.hpp>
 5 #include <opencv2/imgproc/imgproc.hpp>
 6 #ifndef DETECT_H
 7 #define DETECT_H
 8 int DetectFaceEyes();    //检测人脸定位人眼
 9 #endif // !DETECT_H

 

Detect.cpp

#include <iostream>
#include "Detect.h"

using namespace std;
using namespace cv;

int DetectFaceEyes()
{
    Mat heying = imread("./Data/heying.jpg");
    Mat hyGray = imread("./Data/heying.jpg", 0);
    equalizeHist(hyGray, hyGray);        //直方图均匀化

    vector<Rect> faces, eyes;
    const char *faceCascadeFilename = "./Data/haarcascade_frontalface_alt2.xml";
    const char *eyeCascadeFilename = "./Data/haarcascade_eye_tree_eyeglasses.xml";
    CascadeClassifier faceCascade;
    CascadeClassifier eyeCascade;
    if (!faceCascade.load(faceCascadeFilename))
    {
        cout << "人脸检测级联分类器没找到!!" << endl;
        return -1;
    }
    if (!eyeCascade.load(eyeCascadeFilename))
    {
        cout << "眼睛检测级联分类器没找到!!" << endl;
        return -1;
    }
    faceCascade.detectMultiScale(hyGray, faces, 1.2, 5, 0, Size(30, 30));
    for (auto b : faces)
    {
        cout << "输出人脸位置:(x,y):" << "(" << b.x << "," << b.y << "),\
            (width,heigh):(" << b.width << "," << b.height << ")\n";
    }
    if (faces.size() > 0)
    {
        for (size_t i = 0; i < faces.size(); i++)
        {
            // putText(heying,"xxx", cvPoint(faces[i].x, faces[i].y - 10), FONT_HERSHEY_PLAIN, 2.0, Scalar(0, 0, 255));
            rectangle(heying, Point(faces[i].x, faces[i].y), Point(faces[i].x + faces[i].width, faces[i].y + faces[i].height), Scalar(0, 0, 255), 1, 8);
            cout << faces[i] << endl;

            Mat face_ = hyGray(faces[i]);    // 选定人脸的基础上定位眼睛
            eyeCascade.detectMultiScale(face_, eyes, 1.2, 2, 0, Size(30, 30));
            for (size_t j = 0; j < eyes.size(); j++)
            {
                // 在原图上标注眼睛,需要人脸在原图上的坐标
                Point eyeCenter(faces[i].x + eyes[j].x + eyes[j].width / 2, faces[i].y + eyes[j].y + eyes[j].height / 2);
                int radius = cvRound((eyes[j].width + eyes[j].height)*0.25);
                circle(heying, eyeCenter, radius, Scalar(65, 105, 255), 4, 8, 0);
            }
        }
    }
    imshow("result", heying);
    waitKey(5000);
    return 0;
}

 

测试:Main.cpp

#include <iostream>
#include <opencv2\opencv.hpp>
#include "Detect.h"

using namespace cv;

int main()
{
    int isFaceDetect;

    // 测试图片中的人脸
    isFaceDetect = DetectFaceEyes();
    return 0;
}
posted @ 2019-12-19 22:08  燕芝沛然  阅读(2031)  评论(0编辑  收藏  举报