直接按照欧拉函数的计算方式来即可

φ=区间积*区间出现(质数-1)的积/区间出现过的质数的积

区间积是满足类似区间减法的操作的(利用逆元)

由于强制在线,上主席树就可以了(维护每个质数上次出现的位置pre,求区间[l,r],pre<l的元素即可)

  1 const mo=1000777;
  2 type node=record
  3        po,next,num:longint;
  4      end;
  5      link=record
  6        l,r:longint;
  7        s1,s2:int64;
  8      end;
  9 
 10 var ni:array[0..mo] of int64;
 11     s,sd:array[0..50010] of int64;
 12     tree:array[0..50010*20*10] of link;
 13     p,v,last:array[0..1000010] of longint;
 14     e:array[0..500010] of node;
 15     h,a,q:array[0..50010] of longint;
 16     j,t,n,m,len,i,x,y,ans:longint;
 17     wh:int64;
 18 
 19 function build(l,r:longint):longint;
 20   var m,q:longint;
 21   begin
 22     inc(t);
 23     tree[t].s1:=1;
 24     tree[t].s2:=1;
 25     q:=t;
 26     if l<>r then
 27     begin
 28       m:=(l+r) shr 1;
 29       tree[q].l:=build(l,m);
 30       tree[q].r:=build(m+1,r);
 31     end;
 32     exit(q);
 33   end;
 34 
 35 function add(l,r,last,x,y:longint):longint;
 36   var m,q:longint;
 37   begin
 38     inc(t);
 39     q:=t;
 40     if l=r then
 41     begin
 42       tree[q].s1:=tree[last].s1*int64(y-1) mod mo;
 43       tree[q].s2:=tree[last].s2*ni[y] mod mo;
 44     end
 45     else begin
 46       m:=(l+r) shr 1;
 47       if x<=m then
 48       begin
 49         tree[q].r:=tree[last].r;
 50         tree[q].l:=add(l,m,tree[last].l,x,y);
 51       end
 52       else begin
 53         tree[q].l:=tree[last].l;
 54         tree[q].r:=add(m+1,r,tree[last].r,x,y);
 55       end;
 56       tree[q].s1:=tree[tree[q].l].s1*tree[tree[q].r].s1 mod mo;
 57       tree[q].s2:=tree[tree[q].l].s2*tree[tree[q].r].s2 mod mo;
 58     end;
 59     exit(q);
 60   end;
 61 
 62 function get(a,b:link):int64;
 63   var p1,p2:int64;
 64   begin
 65     p1:=b.s1*ni[a.s1] mod mo;
 66     p2:=b.s2*ni[a.s2] mod mo;
 67     exit(p1*p2 mod mo);
 68   end;
 69 
 70 function ask(l,r,x,y,z:longint):longint;
 71   var m:longint;
 72       p,q:int64;
 73   begin
 74     if z>=r then exit(get(tree[x],tree[y]))
 75     else begin
 76       m:=(l+r) shr 1;
 77       if z<=m then exit(ask(l,m,tree[x].l,tree[y].l,z))
 78       else begin
 79         p:=get(tree[tree[x].l],tree[tree[y].l]);
 80         q:=ask(m+1,r,tree[x].r,tree[y].r,z);
 81         exit(p*q mod mo);
 82       end;
 83     end;
 84   end;
 85 
 86 begin
 87   for i:=2 to 1000000 do
 88   begin
 89     if v[i]=0 then
 90     begin
 91       inc(t);
 92       p[t]:=i;
 93       v[i]:=i;
 94     end;
 95     for j:=1 to t do
 96     begin
 97       if i*p[j]>1000000 then break;
 98       v[i*p[j]]:=p[j];
 99       if i mod p[j]=0 then break;
100     end;
101   end;
102   ni[1]:=1;
103   for i:=2 to mo-1 do
104   begin
105     ni[i]:=-int64(mo div i)*ni[mo mod i] mod mo;
106     if ni[i]<0 then ni[i]:=(ni[i]+mo) mod mo;
107   end;
108   readln(n,m);
109   s[0]:=1;
110   sd[0]:=1;
111   for i:=1 to n do
112   begin
113     read(a[i]);
114     s[i]:=s[i-1]*int64(a[i]) mod mo;
115     sd[i]:=sd[i-1]*int64(ni[a[i]]) mod mo;
116     x:=a[i];
117     while x<>1 do
118     begin
119       inc(len);
120       y:=v[x];
121       e[len].po:=y;
122       e[len].num:=last[y];
123       e[len].next:=q[i];
124       q[i]:=len;
125       last[y]:=i;
126       while x mod y=0 do x:=x div y;
127     end;
128   end;
129   t:=0;
130   tree[0].s1:=1;
131   tree[0].s2:=1;
132   h[0]:=build(0,n);
133   for i:=1 to n do
134   begin
135     h[i]:=h[i-1];
136     j:=q[i];
137     while j<>0 do
138     begin
139       y:=e[j].po;
140       h[i]:=add(0,n,h[i],e[j].num,y);
141       j:=e[j].next;
142     end;
143   end;
144   for i:=1 to m do
145   begin
146     readln(x,y);
147     x:=x xor ans;
148     y:=y xor ans;
149     if x>y then
150     begin
151       t:=x; x:=y; y:=t;
152     end;
153     wh:=ask(0,n,h[x-1],h[y],x-1);
154     ans:=wh*s[y] mod mo*sd[x-1] mod mo;
155     if ans<0 then ans:=(ans+mo) mod mo;
156     writeln(ans);
157   end;
158 end.
View Code

 

posted on 2015-07-22 22:26  acphile  阅读(229)  评论(0编辑  收藏  举报