双倍经验题
像这种方案太多不能全部求出来但求前k大一般有这样一个思路
将所有方案无重复不漏的分为若干类,每个类的元素满足单调性,然后我们用堆维护就行了!
对于这道题,可以想到用树的分治来处理路径,当处理根为x时
我们处理当前的子树每个点i和之前的子树上的组成的路径,
我们完全可以把访问顺序状态记录成一条链(状态是nlogn规模不会爆)
当前子树的每个点i在链上都有一段连续的可选区间,这个区间的点和i构成一条过根x的路径
这样链上的每个点就代表了一类路径
很明显,我们就可以noi超级钢琴的做法来解决,st表预处理+堆维护

  1 type way=record
  2        po,num,next:longint;
  3      end;
  4      node=record
  5        l,r,s,t:longint;
  6      end;
  7 
  8 var e:array[0..100010] of way;
  9     h:array[0..1000010] of node;
 10     w:array[0..1000010,0..20] of longint;
 11     d:array[0..20] of longint;
 12     a:array[0..1000010] of longint;
 13     q:array[0..1000010,0..1] of longint;
 14     f,p,s:array[0..50010] of longint;
 15     v:array[0..50010] of boolean;
 16     l,r,root,len,t,tot,i,n,k,x,y,z,j:longint;
 17     m:node;
 18 
 19 function max(a,b:longint):longint;
 20   begin
 21     if a>b then exit(a) else exit(b);
 22   end;
 23 
 24 function mx(x,y:longint):longint;
 25   begin
 26     if a[x]>a[y] then exit(x) else exit(y);
 27   end;
 28 
 29 function ask(x,y:longint):longint;
 30   var k:longint;
 31   begin
 32     k:=trunc(ln(y-x+1)/ln(2));
 33     exit(mx(w[x,k],w[y-d[k]+1,k]));
 34   end;
 35 
 36 procedure swap(var a,b:node);
 37   var c:node;
 38   begin
 39     c:=a;
 40     a:=b;
 41     b:=c;
 42   end;
 43 
 44 procedure add(x,y,z:longint);
 45   begin
 46     inc(len);
 47     e[len].po:=y;
 48     e[len].num:=z;
 49     e[len].next:=p[x];
 50     p[x]:=len;
 51   end;
 52 
 53 procedure up(i:longint);
 54   var j:longint;
 55   begin
 56     j:=i shr 1;
 57     while j>0 do
 58     begin
 59       if a[h[j].s]+a[h[j].t]<a[h[i].s]+a[h[i].t] then
 60       begin
 61         swap(h[i],h[j]);
 62         i:=j;
 63         j:=j shr 1;
 64       end
 65       else break;
 66     end;
 67   end;
 68 
 69 procedure sift(i:longint);
 70   var j:longint;
 71   begin
 72     j:=i shl 1;
 73     while j<=t do
 74     begin
 75       if (j<t) and (a[h[j+1].s]+a[h[j+1].t]>a[h[j].s]+a[h[j].t]) then inc(j);
 76       if a[h[j].s]+a[h[j].t]>a[h[i].s]+a[h[i].t] then
 77       begin
 78         swap(h[i],h[j]);
 79         i:=j;
 80         j:=j shl 1;
 81       end
 82       else break;
 83     end;
 84   end;
 85 
 86 procedure getroot(x,fa:longint);
 87   var i,y:longint;
 88   begin
 89     s[x]:=1;
 90     f[x]:=0;
 91     i:=p[x];
 92     while i<>0 do
 93     begin
 94       y:=e[i].po;
 95       if (y<>fa) and not v[y] then
 96       begin
 97         getroot(y,x);
 98         s[x]:=s[x]+s[y];
 99         f[x]:=max(f[x],s[y]);
100       end;
101       i:=e[i].next;
102     end;
103     f[x]:=max(f[x],tot-s[x]);
104     if f[x]<f[root] then root:=x;
105   end;
106 
107 procedure get(x,fa,len:longint);
108   var i,y:longint;
109   begin
110     inc(t);
111     a[t]:=len;
112     q[t,0]:=l; q[t,1]:=r;
113     i:=p[x];
114     while i<>0 do
115     begin
116       y:=e[i].po;
117       if (y<>fa) and not v[y] then get(y,x,len+e[i].num);
118       i:=e[i].next;
119     end;
120   end;
121 
122 procedure work(x:longint);
123   var i,y:longint;
124   begin
125     v[x]:=true;
126     i:=p[x];
127     inc(t);
128     l:=t;
129     r:=t;
130     q[t,0]:=l; q[t,1]:=r;
131     while i<>0 do
132     begin
133       y:=e[i].po;
134       if not v[y] then
135       begin
136         r:=t;
137         get(y,x,e[i].num);
138       end;
139       i:=e[i].next;
140     end;
141     i:=p[x];
142     while i<>0 do
143     begin
144       y:=e[i].po;
145       if not v[y] then
146       begin
147         root:=0;
148         tot:=s[y];
149         getroot(y,0);
150         work(root);
151       end;
152       i:=e[i].next;
153     end;
154   end;
155 
156 begin
157   readln(n,k);
158   for i:=1 to n-1 do
159   begin
160     readln(x,y,z);
161     add(x,y,z);
162     add(y,x,z);
163   end;
164   f[0]:=2147483647;
165   tot:=n;
166   getroot(1,0);
167   work(root);
168   tot:=trunc(ln(t)/ln(2));
169   d[0]:=1;
170   for i:=1 to tot do
171     d[i]:=d[i-1]*2;
172 
173   for i:=1 to t do
174     w[i,0]:=i;
175   for j:=1 to tot do
176     for i:=1 to t do
177       if i+d[j]-1<=t then
178         w[i,j]:=mx(w[i,j-1],w[i+d[j-1],j-1])
179       else break;
180 
181   tot:=t; t:=0;
182   for i:=1 to tot do
183   begin
184     inc(t);
185     with h[t] do
186     begin
187       l:=q[i,0]; r:=q[i,1];
188       s:=i;
189       t:=ask(l,r);
190     end;
191     up(t);
192   end;
193   for i:=1 to k do
194   begin
195     writeln(a[h[1].s]+a[h[1].t]);
196     swap(h[1],h[t]);
197     m:=h[t];
198     dec(t);
199     sift(1);
200     if m.t>m.l then
201     begin
202       inc(t);
203       with h[t] do
204       begin
205         l:=m.l; r:=m.t-1;
206         s:=m.s;
207         t:=ask(l,r);
208       end;
209       up(t);
210     end;
211     if m.t<m.r then
212     begin
213       inc(t);
214       with h[t] do
215       begin
216         l:=m.t+1; r:=m.r;
217         s:=m.s;
218         t:=ask(l,r);
219       end;
220       up(t);
221     end;
222   end;
223 end.
View Code

 

 

 

 

posted on 2015-03-31 16:35  acphile  阅读(248)  评论(0编辑  收藏  举报