拼命加载中~

HashSet(散列集)、HashMap(散列映射)

简介

  • 本篇将简单讲解Java集合框架中的HashSetHashMap

散列集(HashSet)

快速入门

  • 底层原理:动态数组加单向链表或红黑树。JDK 1.8之后,当链表长度超过阈值8时,链表将转换为红黑树。

  • 查阅HashSet的源码,可以看到HashSet的底层是HashMapHashSet相当于只用了HashMapKey的部分,当需要进行添加元素操作时,其值Value始终为常量PRESENT = new Object()。以下为HashSet的代码片段:

private transient HashMap<E,Object> map;

public HashSet() {
    map = new HashMap<>();
}

public boolean add(E e) {
    return map.put(e, PRESENT)==null;
}

public Iterator<E> iterator() {
        return map.keySet().iterator();
}
  • 上面说到,在JDK 1.8之后,当链表长度超过阈值8时,链表将转为红黑树;当链表长度小于6时,红黑树重新转为链表。那么为什么阈值是8呢?
  • 阈值定义为8,符合数学概率论上的泊松分布Poisson。根据泊松分布,一个桶bucket是很难被填满达到长度8的。
  • 一旦用于存储数据的链表长度达到阈值8,则很大的可能是该HashSet所使用的散列函数性能不佳、或存在恶意代码向集中添加了很多具有相同散列码的值,此时转为平衡二叉树可以提高性能。

散列表

  • 链表LinkedList、数组Array或数组列表ArrayList都有一个共同的缺点:根据值查找元素速度慢。一旦存放的数据较多,查找速度将十分缓慢。
  • 如果应用中开发者不在意元素的排列顺序,此时推荐使用的数据结构为散列表。散列表用于快速查找对象。
  • 使用散列表的关键是对象必须具备一个散列码,通过对象内HashCode()方法即可计算得到对象的散列码。一般情况下,不同数据的对象将产生不同的散列码。
  • 下表显示了使用String类中hashCode()方法成的散列码:
字符串 散列码
"Lee" 76268
"lee" 107020
"eel" 100300
  • Java中,散列表HashTable使用动态数组加链表或红黑树的形式实现。
  • 动态数组中的每个位置被称为bucket。要想查找元素位于散列表中的位置,需要首先计算元素的散列码,然后与桶的总数取余,所得到的结果就是保存这个元素的桶的索引。
  • 假设动态数组为table,对象a的散列码为hashCode,则元素将存放在table的索引为hashCode % table.size(),通常将该索引值成为散列值,它与散列码是不一样的。

  • 例如,如果某个对象的散列码为76268,并且有128个桶,那么这个对象应该保存在第108号桶中,因为76268%128=108
  • 如果在这个桶中没有其他的元素,此时将元素直接插入到桶中即可;但如果桶已经被填充,这种现象被称为散列冲突hash collision。发生散列冲突,需要将新对象与桶中的所有对象进行比较,查看这个对象是否已经存在。
  • 此时如果散列码合理地随机分布(可以理解为散列函数hashCode()合理),桶的数目也足够大,需要比较的次数就会很少。
  • Java 8中,桶满时会从链表变为平衡二叉树。如果选择的散列函数不好,会产生很多冲突,或者如果有恶意代码试图在散列表中填充多个有相同散列码的值,这样改为平衡二叉树能提高性能。
  • 如果需要更多地控制散列表的性能,可以指定一个初始的桶数。桶数是指用于收集具有相同散列值的桶的数目。如果要插入到散列表中的元素太多,就会增加冲突数量,降低检索的性能。
  • 如果大致知道最终会有多少个元素要插入到散列表中,就可以设置桶数。通常,将桶数设置为预计元素个数的75%~150%。有些研究人员认为:最好将桶数设置为一个素数,以防止键的聚集。不过,对此并没有确凿的证据。
  • 标准类库使用的桶数是2的次幂,默认值为16(为表大小提供的任何值,都将自动转换为2的下一个幂值)。
  • 但是,并不总能够知道需要存储多少个元素,也有可能最初的估计过低。如果散列表太满,就需要再散列rehashed。如果要对散列表再散列,就需要创建一个桶数更多的表,并将所有元素插入到这个新表中,然后丢弃原来的表。装填因子load factor可以确定何时对散列表进行再散列。
  • 例如,如果装填因子是0.75(默认值),说明表中已经填满了75%以上,就会自动再散列,新表的桶数是原来的两倍。对于大多数程序来说,装填因子为0.75是合理的。
  • 散列表可以用于实现很多重要的数据结构,其中最简单的是集类型。集是没有重复元素的元素集合,其中add方法首先会在这个集中查找要添加的对象,如果不存在,就添加这个对象。
  • Java集合框架提供了一个HashSet类,它实现了基于散列表的集。可以用add方法添加元素。contains方法已经被重新定义,用来快速查找某个元素是否已经在集中。它只查看一个桶中的元素,而不必查看集合中所有元素。
  • 散列集迭代器将依次访问所有的桶,由于散列将元素分散在表中,所以会以一种看起来随机的顺序访问元素。只有不关心集合中元素的顺序时,才应该使用HashSet
  • HashSet的实现基于HashMap,在随后会对HashMap的部分源码进行分析,以了解其初始容量及扩容机制。

散列映射(HashMap)

快速入门

  • 底层原理:动态数组加单向链表或红黑树。JDK 1.8之后,当链表长度超过阈值8时,链表将转换为红黑树。默认散列表中的动态数组长度为16,散列因子为0.75,扩容阈值为12
  • 扩容机制:扩容后散列表中的动态数组长度,变为旧动态数组的两倍。扩容阈值为散列因子与动态数组长度的乘积。
  • 以下为HashMap中代表单向链表结构的Node<K, V>类,与代表红黑树结构的TreeNode<K, V>类。
// HashMap.java源码
// 基于单向链表的用于存储数据的对象
static class Node<K,V> implements Map.Entry<K,V> {
    final int hash;
    final K key;
    V value;
    Node<K,V> next;

    Node(int hash, K key, V value, Node<K,V> next) {
        this.hash = hash;
        this.key = key;
        this.value = value;
        this.next = next;
    }
    ...
}

// 基于红黑树的用于存储数据的对象
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
    TreeNode<K,V> parent;  // red-black tree links
    TreeNode<K,V> left;
    TreeNode<K,V> right;
    TreeNode<K,V> prev;    // needed to unlink next upon deletion
    boolean red;
    TreeNode(int hash, K key, V val, Node<K,V> next) {
        super(hash, key, val, next);
    }
    ...
}

二次散列

  • 散列映射HashMap只对键进行散列,与键关联的值不进行散列。以下为HashMap中的部分源码:
public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
}

static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
  • 所有使用put()方法存入HashMap中的键值对,都会在内部调用putVal()进行添加元素操作。putVal()方法的第一个参数则需要提供key的散列码。
  • 此处并没有直接使用key.hashCode(),而是使用了HashMap中的hash()方法对key进行二次散列。二次散列可以理解为在对象调用它的散列函数之后,再进行一次额外的计算。二次散列有助于获得更好的散列码。

扩容机制

  • HashMap中的动态数组初始容量为16,默认的散列因子为0.75,即在容量到达16 * 0.75 = 12时,会对动态数组进行扩容处理,上限容量被称为threshold
  • 扩容后的HashMap,其动态数组容量为原来的2倍,由于散列因子不会改变,因此threshold也为原来的2倍。
  • 以下为HashMapresize()putVal()的源码:
final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table;
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap, newThr = 0;
    if (oldCap > 0) {
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold
    }
    else if (oldThr > 0) // initial capacity was placed in threshold
        newCap = oldThr;
    else {               // zero initial threshold signifies using defaults
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    @SuppressWarnings({"rawtypes","unchecked"})
    Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;
    if (oldTab != null) {
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode)
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // preserve order
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do {
                        next = e.next;
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
               boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length; // 第一个resize()是进行动态数组Node<K, V>[]初始化的操作,不会进行扩容
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);
    else {
        Node<K,V> e; K k;
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;
        else if (p instanceof TreeNode)
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        else {
            for (int binCount = 0; ; ++binCount) {
                if ((e = p.next) == null) {
                    p.next = newNode(hash, key, value, null);
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);
                    break;
                }
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                p = e;
            }
        }
        if (e != null) { // existing mapping for key
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
    }
    ++modCount;
    // 当HashMap中元素数量大于阈值threshold,则会进行扩容resize()操作
    if (++size > threshold)
        resize();
    afterNodeInsertion(evict);
    return null;
}
  • 通过源码可以知道,HashMap在初始化的时候并不会立即为动态数组分配内存,直到调用putVal()为止,才会在putVal()中调用resize()方法初始化动态数组。
  • 动态数组Node<K, V>[]将在resize()中完成初始化或扩容的操作。
  • 其中有关初始化的关键代码为:
newCap = DEFAULT_INITIAL_CAPACITY; // DEFAULT_INITIAL_CAPACITY = 1 << 4,即默认大小为16。
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); // threshold = newCap * 0.75,即默认为12。
  • 有关于扩容的关键代码为:
if (oldCap > 0) { // 当动态数组拥有默认容量时,如果再次调用resize(),则一定会进行扩容操作
    if (oldCap >= MAXIMUM_CAPACITY) {
        threshold = Integer.MAX_VALUE;
        return oldTab;
    } else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) { // 容量为原来的2倍
        newThr = oldThr << 1; // 阈值为原来的2倍
    }
}

总结

  • 以上为所有关于HashSetHashMap的粗略介绍。
  • 如果希望了解更多的内容,可以前往JDK阅读源码。
posted @ 2020-10-12 21:18  phax-ccc  阅读(253)  评论(0编辑  收藏  举报