运用RabbitMQ编写秒杀逻辑
简介
- 阅读本篇,需要具备
RabbitMQ
的知识,以及其在SpringBoot
中的应用。 - 本篇将使用
RabbitMQ
制作一个秒杀系统的雏形,其主要充当的作用是流量削峰。
系统架构图
- 秒杀逻辑分为两部分:
spike-client
:用于接收购买信息,查询redis
并扣除库存,购买成功则将用户信息发送到RabbitMQ
;spike-server
:用于处理交换机exchange
中的用户信息,程序将使用该信息完成扣库及订单生成操作。
- 在
redis
检查库存信息并确认用户具有购买资格后,可以在redis
中使用相关的用户信息,创建一个String
类型数据,待订单创建完成后,更新该数据的值为订单对象的json
格式字符串数据即可。- 客户端在得知购买成功后,需要持续请求个人的订单信息,该信息首先会在
redis
中查询,未持久化的订单只能获得空值; - 待系统持久化完成并写入
redis
后,客户端将请求并获取到真正的订单信息; - 客户端获取信息后,进入支付阶段。
- 客户端在得知购买成功后,需要持续请求个人的订单信息,该信息首先会在
spike-server服务端
- 大部分是常规的项目代码,会着重介绍其中较为重要的关于
RabbitMQ
的部分。 - 模块架构:
spike_goods
的数据库表同goods
数据库表一致:- 注意,这里没有编写
SpikeGoods.java
,该类和Goods.java
源码是完全一致的。
- 注意,这里没有编写
CREATE TABLE `goods` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`description` varchar(30) NOT NULL,
`spu` varchar(30) NOT NULL,
`sku` varchar(30) NOT NULL,
`balance` int(11) NOT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=2 DEFAULT CHARSET=utf8;
GoodsMapper.xml
及GoodsServiceImpl.java
源码:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE mapper
PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN"
"http://mybatis.org/dtd/mybatis-3-mapper.dtd">
<mapper namespace="cn.dylanphang.spikeserver.mapper.GoodsMapper">
<select id="findBySku" resultType="goods" parameterType="string">
SELECT *
FROM goods
WHERE sku = #{goodsSku};
</select>
<update id="modifyBalance">
UPDATE goods
SET balance = #{param2}
WHERE sku = #{param1};
</update>
</mapper>
package cn.dylanphang.spikeserver.service.impl;
import cn.dylanphang.spikeserver.mapper.GoodsMapper;
import cn.dylanphang.spikeserver.pojo.Goods;
import cn.dylanphang.spikeserver.service.GoodsService;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;
import javax.annotation.Resource;
/**
* @author dylan
* @date 2020/12/16
*/
@Service("goodsService")
@Transactional(rollbackFor = Exception.class)
public class GoodsServiceImpl implements GoodsService {
@Resource
private GoodsMapper goodsMapper;
@Override
public Goods findBySku(String goodsSku) {
return this.goodsMapper.findBySku(goodsSku);
}
@Override
public void modifyBalance(String goodsSku, Integer finalQuantity) {
this.goodsMapper.modifyBalance(goodsSku, finalQuantity);
}
@Override
public void changeBalance(String goodsSku, Integer changeQuantity) {
int finalQuantity = this.findBySku(goodsSku).getBalance() - changeQuantity;
if (finalQuantity < 0) {
throw new RuntimeException("Balance is not enough.");
}
this.modifyBalance(goodsSku, finalQuantity);
}
}
SpikeGoodsMapper.xml
及SpikeGoodsMapperImpl.java
源码:- 其中扣库的过程是先查询,后扣减,并没有将
sql
置于同一条语句中; - 关于
FOR UPDATE
字句,该字句在使用队列的情况下,会造成一定的资源浪费,但后续使用非队列进行对比实验时,需要使用到此字句保存事务的一致性; - 方法
modifyBalance
中手动延时80ms
模拟处理缓慢的情况。
- 其中扣库的过程是先查询,后扣减,并没有将
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE mapper
PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN"
"http://mybatis.org/dtd/mybatis-3-mapper.dtd">
<mapper namespace="cn.dylanphang.spikeserver.mapper.SpikeGoodsMapper">
<select id="findBySku" resultType="goods" parameterType="string">
SELECT *
FROM spike_goods
WHERE sku = #{goodsSku}
FOR UPDATE;
</select>
<update id="modifyBalance">
UPDATE spike_goods
SET balance = #{param2}
WHERE sku = #{param1};
</update>
<insert id="insert" parameterType="goods">
INSERT INTO spike_goods (description, spu, sku, balance)
VALUES (#{description}, #{spu}, #{sku}, #{balance});
</insert>
<delete id="truncate" parameterType="string">
DELETE
FROM spike_goods
WHERE sku = #{goodsSku};
</delete>
</mapper>
package cn.dylanphang.spikeserver.service.impl;
import cn.dylanphang.spikeserver.mapper.SpikeGoodsMapper;
import cn.dylanphang.spikeserver.pojo.Goods;
import cn.dylanphang.spikeserver.service.GoodsService;
import cn.dylanphang.spikeserver.service.SpikeGoodsService;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;
import javax.annotation.Resource;
/**
* @author dylan
* @date 2020/12/16
*/
@Service("spikeGoodsService")
@Transactional(rollbackFor = Exception.class)
public class SpikeGoodsServiceImpl implements SpikeGoodsService {
@Resource
private GoodsService goodsService;
@Resource
private SpikeGoodsMapper spikeGoodsMapper;
@Override
public Goods findBySku(String goodsSku) {
return this.spikeGoodsMapper.findBySku(goodsSku);
}
@Override
public void modifyBalance(String goodsSku, Integer finalQuantity) throws InterruptedException {
// *.模拟扣库缓慢的情况
Thread.sleep(80);
this.spikeGoodsMapper.modifyBalance(goodsSku, finalQuantity);
}
@Override
public void changeBalance(String goodsSku, Integer changeQuantity) throws InterruptedException {
int finalQuantity = this.findBySku(goodsSku).getBalance() - changeQuantity;
if (finalQuantity < 0) {
throw new RuntimeException("Balance is not enough.");
}
this.modifyBalance(goodsSku, finalQuantity);
}
@Override
public void insert(Goods goods) {
this.spikeGoodsMapper.insert(goods);
}
@Override
public void spikeGoods(String goodsSku, Integer quantity) {
// 1.库存扣减
this.goodsService.changeBalance(goodsSku, quantity);
// 2.获取商品信息
final Goods goods = this.goodsService.findBySku(goodsSku);
goods.setBalance(quantity);
// 3.设置秒杀商品
this.insert(goods);
}
@Override
public void truncate(String goodsSku) {
this.spikeGoodsMapper.truncate(goodsSku);
}
}
SpikeController
中提供了上架秒杀商品接口,及相关处理非队列实验时所需要的接口:
package cn.dylanphang.spikeserver.controller;
import cn.dylanphang.spikeserver.pojo.Goods;
import cn.dylanphang.spikeserver.service.GoodsService;
import cn.dylanphang.spikeserver.service.SpikeGoodsService;
import lombok.extern.slf4j.Slf4j;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import javax.annotation.Resource;
/**
* @author dylan
* @date 2020/12/16
*/
@RestController
@Slf4j
public class SpikeController {
@Resource
private GoodsService goodsService;
@Resource
private SpikeGoodsService spikeGoodsService;
@Resource
private RedisTemplate<String, Object> redisTemplate;
@RequestMapping("/find")
public Goods find(String goodsSku) {
return this.goodsService.findBySku(goodsSku);
}
/**
* 决定指定商品用于秒杀的数量。并将该数量的sku和quantity写入redis用于预查询。
*
* @param goodsSku sku
* @param quantity quantity
*/
@RequestMapping("/spike")
public void spike(String goodsSku, Integer quantity) {
// *.以下两条业务代码需要放置在同一个Service中
try {
this.spikeGoodsService.spikeGoods(goodsSku, quantity);
this.redisTemplate.opsForValue().set(goodsSku, quantity);
} catch (Exception e) {
log.info("库存不足");
}
}
@RequestMapping("/rollback")
public void rollback(String goodsSku, Integer quantity) {
this.goodsService.modifyBalance(goodsSku, quantity);
this.spikeGoodsService.truncate(goodsSku);
}
/**
* 该接口提供直接购买的方式。用于测试2000并发下系统是否崩溃。
*
* @param identity id
* @param goodsSku sku
* @param quantity quantity
*/
@RequestMapping("/directBuy")
public String directBuy(String identity, String goodsSku, Integer quantity) {
// *.在此方法中实际还需要创建订单并返回该订单的编号,在创建订单的方法中去修改库存,此处省略
try {
this.spikeGoodsService.changeBalance(goodsSku, quantity);
} catch (Exception e) {
log.info(identity + "购买失败。请稍后再试。");
return "[" + identity + "] Failure. No stock.";
}
log.info(identity + "购买" + quantity + "个" + goodsSku + "等待支付。订单号为:BA[" + identity + "]3740027734074");
return "[" + identity + "] Successful.";
}
}
RabbitmqConfig.java
将在系统启动时,创建项目所需要的队列、交换机,及完成它们之间的绑定操作:
package cn.dylanphang.spikeserver.config;
import org.springframework.amqp.core.*;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
/**
* @author dylan
* @date 2020/12/16
*/
@Configuration
public class RabbitmqConfig {
private static final String QUEUE_NAME = "orderQueue";
private static final String EXCHANGE_NAME = "orderExchange";
private static final String ROUTING_KEY = "goods.order";
/**
* 该Queue是创建给spike-server中的@RabbitListener用于接收信息的。
*
* @return Queue
*/
@Bean("orderQueue")
public Queue orderQueue() {
return new Queue(QUEUE_NAME);
}
/**
* 该Exchange是创建给spike-client用于发布消息的。类型为Topic。
*
* @return Exchange
*/
@Bean("orderExchange")
public Exchange orderExchange() {
return new TopicExchange(EXCHANGE_NAME);
}
/**
* 绑定Queue与Exchange让队列明确需要到那个Exchange中接收消息,并指定该Queue的所接收信息必须携带的routingKey.
*
* @param orderQueue Queue
* @param orderExchange Exchange
* @return Binding
*/
@Bean
public Binding binding(Queue orderQueue, Exchange orderExchange) {
return BindingBuilder.bind(orderQueue).to(orderExchange).with(ROUTING_KEY).noargs();
}
}
OrderListener
将从队列中有序地取出购买信息并处理:
package cn.dylanphang.spikeserver.listener;
import cn.dylanphang.spikeserver.service.SpikeGoodsService;
import com.fasterxml.jackson.core.JsonProcessingException;
import com.fasterxml.jackson.databind.ObjectMapper;
import lombok.extern.slf4j.Slf4j;
import org.springframework.amqp.rabbit.annotation.RabbitListener;
import org.springframework.stereotype.Component;
import javax.annotation.Resource;
import java.util.Properties;
/**
* @author dylan
* @date 2020/12/16
*/
@Component
@Slf4j
public class OrderListener {
private static final String QUEUE_NAME = "orderQueue";
@Resource
private SpikeGoodsService spikeGoodsService;
@RabbitListener(queues = QUEUE_NAME)
public void handleOrder(String message) {
final ObjectMapper objectMapper = new ObjectMapper();
try {
final Properties properties = objectMapper.readValue(message, Properties.class);
final String name = properties.getProperty("identity");
final String sku = properties.getProperty("goodsSku");
final Integer quantity = Integer.valueOf(properties.getProperty("quantity"));
// *.在此方法中实际还需要创建订单并返回该订单的编号,在创建订单的方法中去修改库存,此处省略
try {
this.spikeGoodsService.changeBalance(sku, quantity);
} catch (Exception e) {
log.info(name + "购买失败。请稍后再试。");
return;
}
log.info(name + "购买" + quantity + "个" + sku + "等待支付。订单号为:BA[" + name + "]3740027734074");
} catch (JsonProcessingException e) {
log.error(e.getMessage());
throw new RuntimeException(e);
}
}
}
application.yml
中的配置如下:- 使用了
druid
数据库连接池; spike-server
服务端的启动端口为9090
。
- 使用了
spring:
datasource:
druid:
db-type: com.alibaba.druid.pool.DruidDataSource
driver-class-name: com.mysql.cj.jdbc.Driver
url: jdbc:mysql://localhost:3306/mall?serverTimezone=GMT%2B8&useAffectedRows=true
username: root
password: root
# 初始连接数
initial-size: 5
# 最小连接数
min-idle: 10
# 最大连接数
max-active: 20
# 获取连接超时时间
max-wait: 5000
# 连接有效性检测时间
time-between-eviction-runs-millis: 60000
# 连接在池中最小生存的时间
min-evictable-idle-time-millis: 300000
# 连接在池中最大生存的时间
max-evictable-idle-time-millis: 900000
test-while-idle: true
test-on-borrow: false
test-on-return: false
# 检测连接是否有效
validation-query: select 1
rabbitmq:
host: 127.0.0.1
port: 5672
username: dylan
password: 123456
virtual-host: /spike-system
redis:
host: 192.168.88.210
port: 6379
mybatis:
mapper-locations: classpath:mapper/*xml
type-aliases-package: cn.dylanphang.spikeserver.pojo
server:
port: 9090
spike-client客户端
- 此模块用于判定用户是否购买成功,并将相关购买成功的用户信息,发送到消息队列中。
- 模块架构:
RedisConfig.java
源码如下,用于自定义RedisTemplate<String, Object>
对象:- 此配置类可以省略,实验存入
redis
的数据仅仅是商品库存信息,但多数情况下,项目都会构建此类,用于存储对象; - 需要知道
SpringBoot
默认不提供RedisTemplate<String, Object>
对象; SpringBoot
仅提供自动配置的RedisTemplate<Object, Object>
和RedisTemplate<String, String>
对象。
- 此配置类可以省略,实验存入
package cn.dylanphang.spikeclient.config;
import com.fasterxml.jackson.databind.ObjectMapper;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.connection.RedisConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.serializer.Jackson2JsonRedisSerializer;
import org.springframework.data.redis.serializer.StringRedisSerializer;
/**
* 本类用于自定义RedisTemplate,如果需要用于直接存储pojo类,那么该类需要进行序列化。
* 数据需要在网路上进行传输,一般都需要进行序列化操作。
* 其中主要目的是让value对象可以使用ObjectMapper进行转换后再序列化,重点是Jackson2JsonRedisSerializer<Object>与ObjectMapper。
*
* @author dylan
* @date 2020/12/16
*/
@Configuration
public class RedisConfig {
@Bean
public RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory redisConnectionFactory) {
// 0.创建RedisTemplate对象并设置连接方式,默认是lettuce
RedisTemplate<String, Object> template = new RedisTemplate<>();
template.setConnectionFactory(redisConnectionFactory);
// 1.字符串序列化和对象序列化
final StringRedisSerializer stringRedisSerializer = new StringRedisSerializer();
final Jackson2JsonRedisSerializer<Object> jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer<>(Object.class);
// 2.将对象序列化为Json字符串格式的数据,需要为序列化实例设置一个ObjectMapper对象
// *.如果不对ObjectMapper进行任何配置,那么从redis中取出来的对象会被封装在一个LinkedHashMap中
jackson2JsonRedisSerializer.setObjectMapper(new ObjectMapper());
// 3.key采用String的方式序列化,value采用Jackson的方式序列化
template.setKeySerializer(stringRedisSerializer);
template.setValueSerializer(jackson2JsonRedisSerializer);
template.setHashKeySerializer(stringRedisSerializer);
template.setHashValueSerializer(jackson2JsonRedisSerializer);
// 4.初始化RedisTemplate对象
template.afterPropertiesSet();
return template;
}
}
RedisServiceImpl.java
源码如下,使用redisTemplate
对象操作redis
中的数据:- 对于
redis
来说单条的语句可以保证事务的原子性的。
- 对于
package cn.dylanphang.spikeclient.service.impl;
import cn.dylanphang.spikeclient.service.RedisService;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.stereotype.Service;
import javax.annotation.Resource;
/**
* @author dylan
* @date 2020/12/16
*/
@Service("redisService")
public class RedisServiceImpl implements RedisService {
@Resource
private RedisTemplate<String, Object> redisTemplate;
@Override
public void modify(String goodsSku, Integer quantity) {
// *.秒杀自设置的一刻开始就会创建一个redis的String类型数据用于存储秒杀商品的库存信息,从redis中扣减数量
final Long decrement = this.redisTemplate.opsForValue().decrement(goodsSku, quantity);
if (decrement != null && decrement < 0) {
throw new RuntimeException("No any stock.");
}
}
}
SpikeController.java
源码如下:- 使用
redisService
检查redis
中相关商品是否有库存; - 使用
objectMapper
对象将数据包装为json
格式的字符串; - 使用
rabbitTemplate
中提供的converAndSend
方法,将包装后的数据发送到交换机exchange
中。
- 使用
package cn.dylanphang.spikeclient.controller;
import cn.dylanphang.spikeclient.service.RedisService;
import com.fasterxml.jackson.core.JsonProcessingException;
import com.fasterxml.jackson.databind.ObjectMapper;
import lombok.extern.slf4j.Slf4j;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import javax.annotation.Resource;
import java.util.HashMap;
/**
* spike-client将需要处理的数据使用ObjectMapper进行处理,得到Json格式字符串,并发送到Exchange: orderExchange中。
* spike-server中的@RabbitListener会通过orderQueue持续监听orderExchange中是否有消息,如果有则会被orderQueue所接收到。
* routingKey是用于识别筛选orderQueue的标志,orderExchange采用的是Topic类型,那么routingKey的设定会更加灵活。
*
* @author dylan
* @date 2020/12/16
*/
@RestController
@Slf4j
public class SpikeController {
private static final String EXCHANGE_NAME = "orderExchange";
private static final String ROUTING_KEY = "goods.order";
@Resource
private RedisService redisService;
@Resource
private RabbitTemplate rabbitTemplate;
/**
* Listener中采用线程休眠80ms模拟处理缓慢的情况,此时使用redis存储库存信息加以控制,因无库存而购买失败的用户会获得即时反馈。
*
* @param identity id
* @param goodsSku sku
* @param quantity quantity
* @return string
* @throws JsonProcessingException exception
*/
@RequestMapping("/buy")
public String buy(String identity, String goodsSku, Integer quantity) throws JsonProcessingException {
// 1.修改redis中的库存信息,其中的库存信息在秒杀确认的时候被写入了redis中,如果抛出异常,则抢购失败
try {
this.redisService.modify(goodsSku, quantity);
} catch (Exception e) {
return "[" + identity + "] Failure. No stock.";
}
// 2.将参数转为Json格式的字符串,实际中形参可能是一个pojo类型,那么此时可以直接使用ObjectMapper转换为Json格式字符串
final HashMap<String, Object> hashMap = new HashMap<>(3);
hashMap.put("identity", identity);
hashMap.put("goodsSku", goodsSku);
hashMap.put("quantity", quantity);
final ObjectMapper objectMapper = new ObjectMapper();
final String message = objectMapper.writeValueAsString(hashMap);
// 3.发送到消息队列中
this.rabbitTemplate.convertAndSend(EXCHANGE_NAME, ROUTING_KEY, message);
// 4.当前端收到本条信息后,需要持续请求另一个controller以获取已创建好的订单编号等信息,用于支付业务
return "[" + identity + "] Successful.";
}
@RequestMapping("/getOrder")
public void getOrder(String identity) {
// *.考虑到成功抢购的人才会请求此接口,那么可以直接查询数据库,不需要建立新的队列了
log.info("根据用户信息查询订单信息,返回给前端用于支付业务");
}
}
项目测试
-
测试类写在了
spike-client
中,其中分为两部分测试:- 不使用
RabbitMQ
,直接调用spike-server
所提供的/directBuy
接口; - 使用
RabbitMQ
,将调用spike-client
中所提供的/buy
接口。
- 不使用
-
其中线程池使用了
Google
提供的guava
包,线程池工具类ThreadUtils.java
源码如下:
package cn.dylanphang.spikeclient.util;
import com.google.common.util.concurrent.ThreadFactoryBuilder;
import java.util.concurrent.*;
/**
* @author dylan
*/
public class ThreadUtils {
public static void create(Runnable runnable) {
ThreadFactory namedThreadFactory = new ThreadFactoryBuilder()
.setNameFormat("demo-pool-%d").build();
ExecutorService singleThreadPool = new ThreadPoolExecutor(2000, 4000,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<>(1024), namedThreadFactory, new ThreadPoolExecutor.AbortPolicy());
singleThreadPool.execute(runnable);
}
}
- 所使用的数据库表有两个,一个为
goods
,另一个为spike_goods
。测试类会首先模拟查询表goods
,获取目标商品的库存,并通过访问spike-server
中的/spike
接口,设置本商品的秒杀数量,该数据同时会写入redis
和spike_goods
。 - 关于测试的相关说明:
- 事实上,所有的测试都应该是自动化进行的,但本实验中的部分测试非自动化,仅是为了能更好地理解;
- 因此实际应用中,请以更为规范的方式去编写测试类。
1. 不使用RabbitMQ
- 测试类
SpikeClientNoRabbitMqTest.java
源码如下:- 每次进行测试前都会重置数据,保证商品实际库存为
2000
,用于秒杀的数量为1500
; - 本次实验的并发数量为
10000
条请求,为了便于观察,其中编写了计数代码,在实验结束后程序会输出成功的次数。
- 每次进行测试前都会重置数据,保证商品实际库存为
package cn.dylanphang.spikeclient;
import cn.dylanphang.spikeclient.util.ThreadUtils;
import com.fasterxml.jackson.core.JsonProcessingException;
import com.fasterxml.jackson.databind.ObjectMapper;
import lombok.extern.slf4j.Slf4j;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.http.HttpMethod;
import org.springframework.web.client.RestTemplate;
import javax.annotation.Resource;
import java.util.Properties;
import java.util.concurrent.CountDownLatch;
/**
* @author dylan
* @date 2020/12/17
*/
@Slf4j
@SpringBootTest
public class SpikeClientNoRabbitMqTest {
public static final String FIND = "http://localhost:9090/find?goodsSku=7742994";
public static final String SPIKE = "http://localhost:9090/spike?goodsSku=7742994&quantity=1500";
public static final String ROLLBACK = "http://localhost:9090/rollback?goodsSku=7742994&quantity=2000";
public static final String GOODS_SKU = "7742994";
public static final int CONCURRENT_TIME = 10000;
/**
* RestTemplate中封装了httpclient和urlconnection。
*/
private final RestTemplate restTemplate = new RestTemplate();
private final CountDownLatch countDownLatch = new CountDownLatch(CONCURRENT_TIME);
private final ObjectMapper objectMapper = new ObjectMapper();
@Resource
private RedisTemplate<String, Object> redisTemplate;
@BeforeEach
void init() throws JsonProcessingException {
// 1.确认商品总数量
String body = this.restTemplate.getForEntity(FIND, String.class).getBody();
Properties properties = this.objectMapper.readValue(body, Properties.class);
log.info("商品总数量为:{}", properties.getProperty("balance"));
// 2.划分部分或全部用于秒杀
this.restTemplate.execute(SPIKE, HttpMethod.GET, null, null);
log.info("用于秒杀数量:{}", "1500");
// 3.确认剩余数量
body = this.restTemplate.getForEntity(FIND, String.class).getBody();
properties = this.objectMapper.readValue(body, Properties.class);
log.info("扣减后剩余为:{}", properties.getProperty("balance"));
// 4.确认redis数据是否正常
final Object exist = this.redisTemplate.opsForValue().get(GOODS_SKU);
log.info("redis中存在数量为:{}", null == exist ? "NaN" : (int) exist);
}
@Test
void destroy() {
// 1.恢复商品总数量与秒杀商品表
this.restTemplate.execute(ROLLBACK, HttpMethod.GET, null, null);
// 2.恢复redis
this.redisTemplate.delete(GOODS_SKU);
}
/**
* 在spike-server的SpikeGoodsServiceImpl类中的modifyBalance里,进行了扣库缓慢的模拟操作。
* 此时spike-client中发出的请求受到了扣库缓慢的影响,部分用户因为等待超时而购买失败,部分用户就算购买成功,等待的时间也过长。
*
* @throws InterruptedException 异常
*/
@Test
void test() throws InterruptedException {
int[] finalCounter = new int[]{0};
for (int i = 0; i < CONCURRENT_TIME; i++) {
final int counter = i;
ThreadUtils.create(() -> {
try {
// *.模拟10000台主机同时直接发出请求
final String url = this.urlBuild(counter);
final RestTemplate restTemplate = new RestTemplate();
countDownLatch.await();
final String str = restTemplate.getForEntity(url, String.class).getBody();
log.info(str);
// *.计算成功次数
if (str != null && str.contains("Successful")) {
finalCounter[0]++;
}
} catch (Exception e) {
log.error(e.getMessage());
}
});
this.countDownLatch.countDown();
}
// *.防止此方法结束,导致等待中的线程一同结束,需要休眠大概120秒(可以更短,根据性能而定)
Thread.sleep(120000);
// *.输出成功次数
log.info("Successful times: {}", finalCounter[0]);
}
/**
* 根据传入的数字拼接字符串。
*
* @param counter 数字
* @return url
*/
private String urlBuild(int counter) {
String identity = "";
if (counter < 10) {
identity = "000" + counter;
} else if (counter < 100) {
identity = "00" + counter;
} else if (counter < 1000) {
identity = "0" + counter;
} else {
identity = "" + counter;
}
return "http://localhost:9090/directBuy?goodsSku=7742994&quantity=1&identity=" + identity;
}
}
- 运行测试类,得到如下结果,其中仅有
864
条购买请求成功写入MySQL
中:
- 对比数据库中
spike_goods
的数量:
- 显然用于秒杀的商品数量是符合事务的一致性,总数仍然为
864 + 636 = 1500
件。 - 但此时的购买失败率却惊人地高,观察控制台中的其他输出:
- 其中有直接因为服务器当前请求量过大,而直接被拒绝连接的请求所输出的错误日志,这个问题是很严重的,因为你当前系统一定不止这一个接口在提供服务,此时如果出现连接被拒绝,那么对于其他在用接口来说也会出现连接被拒绝的情况;
- 还有输出为
Failure. No stock
的,注意这里并不是因为没有库存,而是因为等待数据库连接对象超时导致的失败,我们的代码直接将等待超时抛出的异常归类为“失败,无库存。”,实际中需要进一步对异常进行细分处理。
- 提示:还记得之前在
SELECT
字句中使用的FOR UPDATE
吗?如果此时不在SELECT
中添加该字句,会导致事务失去一致性。 - 此时,不同的请求可能查询到同样的库存结果,显然这是不合理的。
FOR UPDATE
字句可以保证查询的数据需要用于更新,其保证了事务的一致性,但却消耗了不少的系统资源。
2. 使用RabbitMQ
- 实际项目中,我们需要解决的问题是:
- 首先,我们并不希望系统在一瞬间接受过多的请求,这可能会导致系统当前的其他接口的不可用性;
- 其次,即使在系统可以承受的请求范围内,我们的数据库
MySQL
也不应该在同一时间处理过多的业务,数据库连接池的最大连接数量是有限的,如果秒杀系统已经将所有的连接对象占用,也会导致其他需要使用连接对象的业务瘫痪; - 最后,是事务的一致性问题,在直接请求系统接口进行购买的前提下,就必须要保证线程之间事务的一致性。
- 线程之间的事务是相互独立的,一个线程中的事务失败并不会导致另一个线程中的事务失败,如何保证线程事物的一致性呢?
- 在查询语句上使用
FOR UPDATE
来进行锁表的操作,表明查询的数据是用于更新的; - 将操作写在同一个
sql
语句中,但这会造成一定的资源浪费,可能需要在dao
层中添加额外的方法。
- 在查询语句上使用
- 使用
RabbitMQ
可以解决以上所有的问题,spike-client
配合redis
中写入的库存信息,可以达到即时反馈用户是否购买成功的目的,同时通过RabbitMQ
将消息发送到指定的交换机中,spike-server
只需要从交换机中获取购买信息创建订单即可。 - 测试类
SpikeClientApplicationTest
如下:- 并发请求数量仍然为
10000
条; - 其中所有的线程都会请求
spike-client
中的/buy
接口,以请求购买,只有库存尚存的情况下,请求才会被放行; - 所有被放行的请求,数据都将被装换为
json
格式的字符串,并发送到指定的交换机exchange
中; - 而
spike-server
中的OrderListener
则持续监听orderQueue
中来自指定交换机exchange
中获取的消息:- 消息是逐条处理的;
- 消息只有完成持久化后,才会进行下一条消息的处理。
- 并发请求数量仍然为
package cn.dylanphang.spikeclient;
import cn.dylanphang.spikeclient.util.ThreadUtils;
import com.fasterxml.jackson.core.JsonProcessingException;
import com.fasterxml.jackson.databind.ObjectMapper;
import lombok.extern.slf4j.Slf4j;
import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.http.HttpMethod;
import org.springframework.test.web.servlet.MockMvc;
import org.springframework.test.web.servlet.request.MockHttpServletRequestBuilder;
import org.springframework.test.web.servlet.request.MockMvcRequestBuilders;
import org.springframework.test.web.servlet.setup.MockMvcBuilders;
import org.springframework.web.client.RestTemplate;
import org.springframework.web.context.WebApplicationContext;
import javax.annotation.Resource;
import java.util.Properties;
import java.util.concurrent.CountDownLatch;
@Slf4j
@SpringBootTest
class SpikeClientApplicationTest {
public static final String FIND = "http://localhost:9090/find?goodsSku=7742994";
public static final String SPIKE = "http://localhost:9090/spike?goodsSku=7742994&quantity=1500";
public static final String ROLLBACK = "http://localhost:9090/rollback?goodsSku=7742994&quantity=2000";
public static final String GOODS_SKU = "7742994";
public static final int CONCURRENT_TIME = 10000;
/**
* RestTemplate中封装了httpclient和urlconnection。
*/
private final RestTemplate restTemplate = new RestTemplate();
private final CountDownLatch countDownLatch = new CountDownLatch(CONCURRENT_TIME);
private final ObjectMapper objectMapper = new ObjectMapper();
@Resource
private WebApplicationContext wac;
@Resource
private RedisTemplate<String, Object> redisTemplate;
@BeforeEach
void init() throws JsonProcessingException {
// 1.确认商品总数量
String body = this.restTemplate.getForEntity(FIND, String.class).getBody();
Properties properties = this.objectMapper.readValue(body, Properties.class);
log.info("商品总数量为:{}", properties.getProperty("balance"));
// 2.划分部分或全部用于秒杀
this.restTemplate.execute(SPIKE, HttpMethod.GET, null, null);
log.info("用于秒杀数量:{}", "1500");
// 3.确认剩余数量
body = this.restTemplate.getForEntity(FIND, String.class).getBody();
properties = this.objectMapper.readValue(body, Properties.class);
log.info("扣减后剩余为:{}", properties.getProperty("balance"));
// 4.确认redis数据是否正常
final Object exist = this.redisTemplate.opsForValue().get(GOODS_SKU);
log.info("redis中存在数量为:{}", null == exist ? "NaN" : (int) exist);
}
@Test
void destroy() {
// 1.恢复商品总数量与秒杀商品表
this.restTemplate.execute(ROLLBACK, HttpMethod.GET, null, null);
// 2.恢复redis
this.redisTemplate.delete(GOODS_SKU);
}
/**
* 模拟高并发情况下,使用RabbitMQ削峰的过程。
*
* @throws InterruptedException 异常
*/
@Test
void contextLoads() throws InterruptedException {
for (int i = 0; i < CONCURRENT_TIME; i++) {
final int counter = i;
ThreadUtils.create(() -> {
try {
// *.测试并发的时候需要将MockMvc置入线程内,模拟10000台主机同时发出请求,不能写到线程之外
final MockMvc mockMvc = MockMvcBuilders.webAppContextSetup(this.wac).build();
final String url = this.urlBuild(counter);
final MockHttpServletRequestBuilder request = MockMvcRequestBuilders.get(url);
countDownLatch.await();
final String str = mockMvc.perform(request).andReturn().getResponse().getContentAsString();
log.info(str);
} catch (Exception e) {
e.printStackTrace();
}
});
this.countDownLatch.countDown();
}
// *.防止此方法结束,导致等待中的线程一同结束,需要休眠大概40秒(可以更短,根据性能而定)
Thread.sleep(40000);
}
/**
* 根据传入的数字拼接字符串。
* @param counter 数字
* @return url
*/
private String urlBuild(int counter) {
String identity = "";
if (counter < 10) {
identity = "000" + counter;
} else if (counter < 100) {
identity = "00" + counter;
} else if (counter < 1000) {
identity = "0" + counter;
} else {
identity = "" + counter;
}
return "http://localhost:8080/buy?goodsSku=7742994&quantity=1&identity=" + identity;
}
}
- 运行测试类,可以观察到测试类中的所有线程,在测试线程休眠的
40
秒中,spike-client
就已经完成了所有的操作,并立即响应给用户是否成功的结果,而在此期间也没有出现任何的异常。
- 此时的
spike-server
服务端正在有序地从队列中获取购买信息,并逐条进行持久化操作:
- 待
spike-server
处理完毕后,数据库中的秒杀商品数量清空,没有出现超卖的现象:
- 此时
RabbitMQ
中的消息也一并被处理完毕:
- 在使用
RabbitMQ
后,所有的并发请求由始至终只会占用了一个数据库连接对象(可能不是同一个); - 同时也不再需要添加
FOR UPDATE
字句,所有的任务都将有序地进行,同时不会影响到系统其它部分的正常运作。
总结
- 使用
RabbitMQ
能有效地达到流量削峰的目的,减轻系统的负担。