back propogation 的线代描述

参考资料:

  算法部分:

    standfor, ufldl  : http://ufldl.stanford.edu/wiki/index.php/UFLDL_Tutorial

    一文弄懂BP:https://www.cnblogs.com/charlotte77/p/5629865.html

  代码部分:

    siraj raval ,4分钟搭建神经网络: http://192.168.73.134/www.sohu.com/a/162305418_697750

  这是我个人学习笔记,希望其他阅读者已经学习过 ufldl关于 neural network 和 back propogation的内容。

 最重要的就是 求解梯度更新公式的矩阵形式(笔记中红框中部分):

 

python 代码,numpy 实现:

# -*- coding=utf-8 -*-

import numpy as np
r'''
    build a neural network by plain numpy
    loss (latex)
        J(w,b) = \frac{1}{m} \sum_{i}^{m}\frac{1}{2}\left \| h_{wb}(x^{(i)}) - y^{(i)} \right \|^2 +\sum \sum \sum W^{(l)}_{(ij)}
                
'''
def getData(): x = np.array([[0, 0, 1], [0, 1, 1], [1, 0, 1], [1, 1, 1]]) y = np.array([0, 1, 1, 0])[:, np.newaxis] return x, y def sigmoid(x, deriv=False): if deriv is True: fx = sigmoid(x) return fx * (1.0 - fx) else: return 1.0 / (1.0 + np.exp(-x)) x, y = getData() fy = sigmoid(y) # print(fy) # np.random.seed(30) w1 = np.random.random([4, 3]) b1 = np.random.random([4, 1]) w2 = np.random.random([1, 4]) b2 = np.random.random([1, 1]) max_iter = 100000 nita = 0.0 # regular step_size = 0.1 for i in range(0, max_iter): # forward z2 = np.dot(w1, x.T) + b1 # 4×4+4×1 (broadcasting) a2 = sigmoid(z2) z3 = np.dot(w2, a2) + b2[0, 0] y_hat = sigmoid(z3) # mse mse = (1.0 / y.shape[0]) * np.dot((y.T - y_hat).T, y.T - y_hat)[0, 0] if i % 500 == 0 or mse < 0.0001: print('when i=' + str(i) + '; mse:' + str(mse)) if mse < 0.0001: break # backward # partial delta_3 = (y_hat - y.T) * sigmoid(z3, deriv=True) delta_2 = np.dot(w2.T, delta_3) * sigmoid(z2, deriv=True) partial_w2 = np.dot(delta_3, a2.T) + nita * w2 partial_b2 = np.dot(delta_3, np.ones([4, 1])) partial_w1 = np.dot(delta_2, x) + nita * w1 partial_b1 = np.dot(delta_2, np.ones([4, 1])) # update parameter w2 -= step_size * partial_w2 b2 -= step_size * partial_b2 w1 -= step_size * partial_w1 b1 -= step_size * partial_b1 print(y_hat)

  

posted @ 2018-12-06 17:30  pertinence  阅读(293)  评论(0编辑  收藏  举报