基于redis分布式缓存实现(新浪微博案例)
第一:Redis 是什么?
Redis是基于内存、可持久化的日志型、Key-Value数据库 高性能存储系统,并提供多种语言的API.
第二:出现背景
- 数据结构(Data Structure)需求越来越多, 但memcache中没有, 影响开发效率
- 性能需求, 随着读操作的量的上升需要解决,经历的过程有:
数据库读写分离(M/S)–>数据库使用多个Slave–>增加Cache (memcache)–>转到Redis - 解决写的问题:
水平拆分,对表的拆分,将有的用户放在这个表,有的用户放在另外一个表; -
可靠性需求
Cache的"雪崩"问题让人纠结
Cache面临着快速恢复的挑战 -
开发成本需求
Cache和DB的一致性维护成本越来越高(先清理DB, 再清理缓存, 不行啊, 太慢了!)
开发需要跟上不断涌入的产品需求
硬件成本最贵的就是数据库层面的机器,基本上比前端的机器要贵几倍,主要是IO密集型,很耗硬件; -
维护性复杂
一致性维护成本越来越高;
BerkeleyDB使用B树,会一直写新的,内部不会有文件重新组织;这样会导致文件越来越大;大的时候需要进行文件归档,归档的操作要定期做;
这样,就需要有一定的down time;
基于以上考虑, 选择了Redis
第三:Redis 在新浪微博中的应用
Redis简介
1. 支持5种数据结构
支持strings, hashes, lists, sets, sorted sets
string是很好的存储方式,用来做计数存储。sets用于建立索引库非常棒;
2. K-V 存储 vs K-V 缓存
新浪微博目前使用的98%都是持久化的应用,2%的是缓存,用到了600+服务器
Redis中持久化的应用和非持久化的方式不会差别很大:
非持久化的为8-9万tps,那么持久化在7-8万tps左右;
当使用持久化时,需要考虑到持久化和写性能的配比,也就是要考虑redis使用的内存大小和硬盘写的速率的比例计算;
3. 社区活跃
Redis目前有3万多行代码, 代码写的精简,有很多巧妙的实现,作者有技术洁癖
Redis的社区活跃度很高,这是衡量开源软件质量的重要指标,开源软件的初期一般都没有商业技术服务支持,如果没有活跃社区做支撑,一旦发生问题都无处求救;
Redis基本原理
redis持久化(aof) append online file:
写log(aof), 到一定程度再和内存合并. 追加再追加, 顺序写磁盘, 对性能影响非常小
1. 单实例单进程
Redis使用的是单进程,所以在配置时,一个实例只会用到一个CPU;
在配置时,如果需要让CPU使用率最大化,可以配置Redis实例数对应CPU数, Redis实例数对应端口数(8核Cpu, 8个实例, 8个端口), 以提高并发:
单机测试时, 单条数据在200字节, 测试的结果为8~9万tps;
2. Replication
过程: 数据写到master–>master存储到slave的rdb中–>slave加载rdb到内存。
存储点(save point): 当网络中断了, 连上之后, 继续传.
Master-slave下第一次同步是全传,后面是增量同步;、
3. 数据一致性
长期运行后多个结点之间存在不一致的可能性;
开发两个工具程序:
1.对于数据量大的数据,会周期性的全量检查;
2.实时的检查增量数据,是否具有一致性;
对于主库未及时同步从库导致的不一致,称之为延时问题;
对于一致性要求不是那么严格的场景,我们只需要要保证最终一致性即可;
对于延时问题,需要根据业务场景特点分析,从应用层面增加策略来解决这个问题;
例如:
1.新注册的用户,必须先查询主库;
2.注册成功之后,需要等待3s之后跳转,后台此时就是在做数据同步。
第四:分布式缓存的架构设计
1.架构设计
由于redis是单点,项目中需要使用,必须自己实现分布式。基本架构图如下所示:
2.分布式实现
通过key做一致性哈希,实现key对应redis结点的分布。
一致性哈希的实现:
l hash值计算:通过支持MD5与MurmurHash两种计算方式,默认是采用MurmurHash,高效的hash计算。
l 一致性的实现:通过java的TreeMap来模拟环状结构,实现均匀分布
3.client的选择
对于jedis修改的主要是分区模块的修改,使其支持了跟据BufferKey进行分区,跟据不同的redis结点信息,可以初始化不同的ShardInfo,同时也修改了JedisPool的底层实现,使其连接pool池支持跟据key,value的构造方法,跟据不同ShardInfos,创建不同的jedis连接客户端,达到分区的效果,供应用层调用
4.模块的说明
l 脏数据处理模块,处理失败执行的缓存操作。
l 屏蔽监控模块,对于jedis操作的异常监控,当某结点出现异常可控制redis结点的切除等操作。
整个分布式模块通过hornetq,来切除异常redis结点。对于新结点的增加,也可以通过reload方法实现增加。(此模块对于新增结点也可以很方便实现)
对于以上分布式架构的实现满足了项目的需求。另外使用中对于一些比较重要用途的缓存数据可以单独设置一些redis结点,设定特定的优先级。另外对于缓存接口的设计,也可以跟据需求,实现基本接口与一些特殊逻辑接口。对于cas相关操作,以及一些事物操作可以通过其watch机制来实现。(参考我以前写的redis事物介绍)
以上是基于redis分布式架构的介绍!但是应用中读写都是在一起的。相关写是在应用操作后flush或者update的,有一定的耦合。为了使读写分离,以及缓存模块跟应用的耦合更小,考虑使用mysql binlog来刷新缓存。以下是基于binlog刷新可性行分析以及实现过程中需要注意的地方。