Java的8大排序的基本思想及实例解读
本文主要详解了Java语言的8大排序的基本思想以及实例解读,详细请看下文:
8种排序之间的关系:
1, 直接插入排序
(1)基本思想:在要排序的一组数中,假设前面(n-1)[n>=2] 个数已经是排
好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数
也是排好顺序的。如此反复循环,直到全部排好顺序。
(2)实例
(3)用java实现
1 package com.njue;
2
3 public class insertSort {
4 public insertSort(){
5 inta[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51};
6 int temp=0;
7 for(int i=1;i<a.length;i++){
8 int j=i-1;
9 temp=a[i];
10 for(;j>=0&&temp<a[j];j--){
11 a[j+1]=a[j]; //将大于temp的值整体后移一个单位
12 }
13 a[j+1]=temp;
14 }
15 for(int i=0;i<a.length;i++)
16 System.out.println(a[i]);
17 }
18 }
2,希尔排序(最小增量排序)
(1)基本思想:算法先将要排序的一组数按某个增量d(n/2,n为要排序数的 个数)分成若干组,每组中记录的下标相差d.对每组中全部元素进行直接插入排序,
然后再用一个较小的增量(d/2)对它进行分组,在每组中再进行直接插入 排序。当增量减到1时,进行直接插入排序后,排序完成。
(2)实例:
(3)用java实现
1 public class shellSort {
2 public shellSort(){
3 int a[]={1,54,6,3,78,34,12,45,56,100};
4 double d1=a.length;
5 int temp=0;
6 while(true){
7 d1= Math.ceil(d1/2);
8 int d=(int) d1;
9 for(int x=0;x<d;x++){
10 for(int i=x+d;i<a.length;i+=d){
11 int j=i-d;
12 temp=a[i];
13 for(;j>=0&&temp<a[j];j-=d){
14 a[j+d]=a[j];
15 }
16 a[j+d]=temp;
17 }
18 }
19 if(d==1)
20 break;
21 }
22 for(int i=0;i<a.length;i++)
23 System.out.println(a[i]);
24 }
25 }
3.简单选择排序
(1)基本思想:在要排序的一组数中,选出最小的一个数与第一个位置的数交换;
然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。
(2)实例:
(3)用java实现
1 public class selectSort {
2 public selectSort(){
3 int a[]={1,54,6,3,78,34,12,45};
4 int position=0;
5 for(int i=0;i<a.length;i++){
6
7 int j=i+1;
8 position=i;
9 int temp=a[i];
10 for(;j<a.length;j++){
11 if(a[j]<temp){
12 temp=a[j];
13 position=j;
14 }
15 }
16 a[position]=a[i];
17 a[i]=temp;
18 }
19 for(int i=0;i<a.length;i++)
20 System.out.println(a[i]);
21 }
22 }
4,堆排序
(1)基本思想:堆排序是一种树形选择排序,是对直接选择排序的有效改进。
堆的定义如下:具有n个元素的序列 (h1,h2,...,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1) (i=1,2,...,n/2)时称之为堆。在这里只讨论满足前者条件的堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。完全二 叉树可以很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个 堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对 它们作交换,最后得到有n个节点的有序序列。从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函 数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。
(2)实例:
初始序列:46,79,56,38,40,84
建堆:
交换,从堆中踢出最大数
依次类推:最后堆中剩余的最后两个结点交换,踢出一个,排序完成。
(3)用java实现
1 import java.util.Arrays; 2 3 public class HeapSort { 4 int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51}; 5 public HeapSort(){ 6 heapSort(a); 7 } 8 public void heapSort(int[] a){ 9 System.out.println("开始排序"); 10 int arrayLength=a.length; 11 //循环建堆 12 for(int i=0;i<arrayLength-1;i++){ 13 //建堆 14 15 buildMaxHeap(a,arrayLength-1-i); 16 //交换堆顶和最后一个元素 17 swap(a,0,arrayLength-1-i); 18 System.out.println(Arrays.toString(a)); 19 } 20 } 21 22 private void swap(int[] data, int i, int j) { 23 // TODO Auto-generated method stub 24 int tmp=data[i]; 25 data[i]=data[j]; 26 data[j]=tmp; 27 } 28 //对data数组从0到lastIndex建大顶堆 29 private void buildMaxHeap(int[] data, int lastIndex) { 30 // TODO Auto-generated method stub 31 //从lastIndex处节点(最后一个节点)的父节点开始 32 for(int i=(lastIndex-1)/2;i>=0;i--){ 33 //k保存正在判断的节点 34 int k=i; 35 //如果当前k节点的子节点存在 36 while(k*2+1<=lastIndex){ 37 //k节点的左子节点的索引 38 int biggerIndex=2*k+1; 39 //如果biggerIndex小于lastIndex,即biggerIndex+1代表的k节点的右子节点存在 40 if(biggerIndex<lastIndex){ 41 //若果右子节点的值较大 42 if(data[biggerIndex]<data[biggerIndex+1]){ 43 //biggerIndex总是记录较大子节点的索引 44 biggerIndex++; 45 } 46 } 47 //如果k节点的值小于其较大的子节点的值 48 if(data[k]<data[biggerIndex]){ 49 //交换他们 50 swap(data,k,biggerIndex); 51 //将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值 52 k=biggerIndex; 53 }else{ 54 break; 55 } 56 }
5.冒泡排序
(1)基本思想:在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换。
(2)实例:
(3)用java实现
1 public class bubbleSort {
2 public bubbleSort(){
3 int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51};
4 int temp=0;
5 for(int i=0;i<a.length-1;i++){
6 for(int j=0;j<a.length-1-i;j++){
7 if(a[j]>a[j+1]){
8 temp=a[j];
9 a[j]=a[j+1];
10 a[j+1]=temp;
11 }
12 }
13 }
14 for(int i=0;i<a.length;i++)
15 System.out.println(a[i]);
16 }
17 }
6.快速排序
(1)基本思想:选择一个基准元素,通常选择第一个元素或者最后一个元素,通过一趟扫描,将待排序列分成两部分,一部分比基准元素小,一部分大于等于基准元素,此时基准元素在其排好序后的正确位置,然后再用同样的方法递归地排序划分的两部分。
(2)实例:
(3)用java实现
1 public class quickSort {
2 int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51};
3 public quickSort(){
4 quick(a);
5 for(int i=0;i<a.length;i++)
6 System.out.println(a[i]);
7 }
8 public int getMiddle(int[] list, int low, int high) {
9 int tmp = list[low]; //数组的第一个作为中轴
10 while (low < high) {
11 while (low < high && list[high] >= tmp) {
12
13 high--;
14 }
15 list[low] = list[high]; //比中轴小的记录移到低端
16 while (low < high && list[low] <= tmp) {
17 low++;
18 }
19 list[high] = list[low]; //比中轴大的记录移到高端
20 }
21 list[low] = tmp; //中轴记录到尾
22 return low; //返回中轴的位置
23 }
24 public void _quickSort(int[] list, int low, int high) {
25 if (low < high) {
26 int middle = getMiddle(list, low, high); //将list数组进行一分为二
27 _quickSort(list, low, middle - 1); //对低字表进行递归排序
28 _quickSort(list, middle + 1, high); //对高字表进行递归排序
29 }
30 }
31 public void quick(int[] a2) {
32 if (a2.length > 0) { //查看数组是否为空
33 _quickSort(a2, 0, a2.length - 1);
34 }
35 }
36 }
7、归并排序
(1)基本排序:归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。
(2)实例:
(3)用java实现
import java.util.Arrays; public class mergingSort { int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51}; public mergingSort(){ sort(a,0,a.length-1); for(int i=0;i<a.length;i++) System.out.println(a[i]); } public void sort(int[] data, int left, int right) { // TODO Auto-generated method stub if(left<right){ //找出中间索引 int center=(left+right)/2; //对左边数组进行递归 sort(data,left,center); //对右边数组进行递归 sort(data,center+1,right); //合并 merge(data,left,center,right); } } public void merge(int[] data, int left, int center, int right) { // TODO Auto-generated method stub int [] tmpArr=new int[data.length]; int mid=center+1; //third记录中间数组的索引 int third=left; int tmp=left; while(left<=center&&mid<=right){ //从两个数组中取出最小的放入中间数组 if(data[left]<=data[mid]){ tmpArr[third++]=data[left++]; }else{ tmpArr[third++]=data[mid++]; } } //剩余部分依次放入中间数组 while(mid<=right){ tmpArr[third++]=data[mid++]; } while(left<=center){ tmpArr[third++]=data[left++]; } //将中间数组中的内容复制回原数组 while(tmp<=right){ data[tmp]=tmpArr[tmp++]; } System.out.println(Arrays.toString(data)); } }
8、基数排序
(1)基本思想:将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列。
(2)实例:
(3)用java实现
1 import java.util.ArrayList; 2 import java.util.List; 3 4 public class radixSort { 5 int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,101,56,17,18,23,34,15,35,25,53,51}; 6 public radixSort(){ 7 sort(a); 8 for(int i=0;i<a.length;i++) 9 System.out.println(a[i]); 10 } 11 public void sort(int[] array){ 12 13 //首先确定排序的趟数; 14 int max=array[0]; 15 for(int i=1;i<array.length;i++){ 16 if(array[i]>max){ 17 max=array[i]; 18 } 19 } 20 21 int time=0; 22 //判断位数; 23 while(max>0){ 24 max/=10; 25 time++; 26 } 27 28 //建立10个队列; 29 List<ArrayList> queue=new ArrayList<ArrayList>(); 30 for(int i=0;i<10;i++){ 31 ArrayList<Integer> queue1=new ArrayList<Integer>(); 32 queue.add(queue1); 33 } 34 35 //进行time次分配和收集; 36 for(int i=0;i<time;i++){ 37 38 //分配数组元素; 39 for(int j=0;j<array.length;j++){ 40 //得到数字的第time+1位数; 41 int x=array[j]%(int)Math.pow(10, i+1)/(int)Math.pow(10, i); 42 ArrayList<Integer> queue2=queue.get(x); 43 queue2.add(array[j]); 44 queue.set(x, queue2); 45 } 46 int count=0;//元素计数器; 47 //收集队列元素; 48 for(int k=0;k<10;k++){ 49 while(queue.get(k).size()>0){ 50 ArrayList<Integer> queue3=queue.get(k); 51 array[count]=queue3.get(0); 52 queue3.remove(0); 53 count++; 54 } 55 } 56 } 57 58 } 59 60 }