mpc_local_planner详解


控制器配置

Controller::configure()
{
  //创建机器模型
  _dynamics = std::make_shared<UnicycleModel>();
  //离散网络,比如多重打靶法。参考点,输入,状态,等变量也会存放在grid里面,会实时更新。而且grid也继承了顶点传入到超图问题构建中
  _grid   = configureGrid(nh);  
  //求解器
  _solver = configureSolver(nh);
  //最优化问题构建, _dynamics,_grid,_solver这三个指针也会传入到最优化问题类里
  _structured_ocp = configureOcp(nh, obstacles, robot_model, via_points);

}

离散网格配置

corbo::DiscretizationGridInterface::Ptr MpcController::configureGrid(const rclcpp_lifecycle::LifecycleNode::SharedPtr& nh)
{
  FiniteDifferencesGridSE2::Ptr grid;
  if (variable_grid)
  {
    FiniteDifferencesVariableGridSE2::Ptr grid = std::make_shared<FiniteDifferencesVariableGridSE2>();
  }
  else
  {
    grid = std::make_shared<FiniteDifferencesGridSE2>();
  }
  std::string collocation_method = "forward_differences";
  if (collocation_method == "forward_differences")
  {
    grid->setFiniteDifferencesCollocationMethod(std::make_shared<ForwardDiffCollocationSE2>());  //_fd_eval
  }
  if (cost_integration_method == "left_sum")
  {
    grid->setCostIntegrationRule(FullDiscretizationGridBaseSE2::CostIntegrationRule::LeftSum);  //_cost_integration
  }

}

求解器配置

configureSolver()
{
  //SolverIpopt这个类里面会新建2个结构:
  //_ipopt_nlp = new IpoptWrapper(this);  
  //_ipopt_app = IpoptApplicationFactory(); 

  //IpoptWrapper类是Ipopt的结构壳子,在nlp_solver_ipopt_wrapper.cpp中,里面主要是求解器的接口
  //这个类只是壳子,具体的问题实现在optimaization里面的问题类里,在configureOcp()里面,就创建了一个HyperGraphOptimizationProblemEdgeBased超图最优问题
  //get_nlp_info()  变量和约束信息
  //eval_f() 目标函数
  //eval_jac_g() 雅可比矩阵
  //eval_h()  海森矩阵   

  //IpoptApplicationFactory是ipopt的标准用法,创建一个IPOPT应用程序:
  //ApplicationReturnStatus status;
  //status = _ipopt_app->Initialize();
  // 设置优化参数
  //_ipopt_app->Options()->SetNumericValue("tol", 1e-9); //最小迭阈值
  //_ipopt_app->Options()->SetStringValue("mu_strategy", "adaptive");
  //_ipopt_app->OptimizeTNLP(_ipopt_nlp);
  //_ipopt_nlp->eval_f();  //获取

  corbo::SolverIpopt::Ptr solver = std::make_shared<corbo::SolverIpopt>();
  solver->initialize();
  solver->setIterations(iterations); //迭代次数
  solver->setMaxCpuTime(max_cpu_time);//最大计算时间
  solver->setIpoptOptionNumeric();  //对应SetNumericValue() 最小迭代阈值
  solver->setIpoptOptionString();  //对应SetStringValue
}

最优化问题构造

Controller::configureOcp()
{
//构建一个超图最优化问题框架,
corbo::BaseHyperGraphOptimizationProblem::Ptr hg = std::make_shared<corbo::HyperGraphOptimizationProblemEdgeBased>();

//构建一个最优控制问题框架,相当于在上面的框架上再套一层
corbo::StructuredOptimalControlProblem::Ptr ocp = std::make_shared<corbo::StructuredOptimalControlProblem>(_grid, _dynamics, hg, _solver);


//控制输入边界
ocp->setControlBounds(Eigen::Vector2d(-max_vel_x_backwards, -max_vel_theta), Eigen::Vector2d(max_vel_x, max_vel_theta));

//二次型目标函数cost,对应_functions.stage_cost,指针类型:QuadraticFormCostSE2
ocp->setStageCost(std::make_shared<QuadraticFormCostSE2>(Q, R, integral_form, lsq_solver));


//终端cost,对应_functions.final_stage_cost,指针类型:QuadraticFinalStateCostSE2
ocp->setFinalStageCost(std::make_shared<QuadraticFinalStateCostSE2>(Qf, lsq_solver));

//不等式约束,对应_functions.stage_inequalities,指针类型:StageInequalitySE2
_inequality_constraint = std::make_shared<StageInequalitySE2>();
//障碍物不等式约束
_inequality_constraint->setObstacleVector(obstacles);
//footprint不等式约束
_inequality_constraint->setRobotFootprintModel(robot_model);
//设置障碍物最小距离
_inequality_constraint->setMinimumDistance(min_obstacle_dist);
//是否开启动态障碍物
_inequality_constraint->setEnableDynamicObstacles(enable_dynamic_obstacles);
//障碍物过滤
_inequality_constraint->setObstacleFilterParameters(force_inclusion_dist, cutoff_dist);
//加速度约束
Eigen::Vector2d ud_lb(-dec_lim_x, -acc_lim_theta);
Eigen::Vector2d ud_ub(acc_lim_x, acc_lim_theta);
_inequality_constraint->setControlDeviationBounds(ud_lb, ud_ub);

//不等式约束传入最优控制器里
ocp->setStageInequalityConstraint(_inequality_constraint);

}

迭代过程

//由computeVelocityCommands过来
//全局路径,当前速度,控制时间,当前时间,控制序列,状态序列
bool Controller::step(const std::vector<geometry_msgs::PoseStamped>& initial_plan, const geometry_msgs::Twist& vel, double dt, ros::Time t,
                      corbo::TimeSeries::Ptr u_seq, corbo::TimeSeries::Ptr x_seq)
{
  _dynamics->getSteadyStateFromPoseSE2(goal, xf); //目标点转为eigen格式
  //起始点根据状态反馈,来选择是用传入的start点,还是用反馈的状态点,还是用odom点。
  _dynamics->getSteadyStateFromPoseSE2(start, x);
  if(如果目标与上一个目标之间的距离或角度变化大于阈值,将清除路径规划数据 _grid。这是为了确保机器人能够适应新的目标或路径)
  {
    _grid->clear();
  }
  if (_grid->isEmpty())  //网格路径是否是空
  {
    bool backward = _guess_backwards_motion && (goal.position() - start.position()).dot(start.orientationUnitVec()) < 0;  //是否需要倒车
    //添加时间序列信息以及姿态信息,从而转换为初始轨迹,并采用线性差值对相邻两个轨迹点之间的轨迹进行差值,生成的轨迹存放在controller类的变量_x_seq_init中
    generateInitialStateTrajectory(x, xf, initial_plan, backward);  //生成参考轨迹
  }

  corbo::StaticReference xref(xf);  //这里参考点只取了目标点一个点,也就是直接追踪裁剪后的最后一个点,这种做法是有问题的
  corbo::ZeroReference uref(_dynamics->getInputDimension());
  //当前点,目标点,参考U,时间,离散时间,输入队列,状态队列
  _ocp_successful = PredictiveController::step(x, xref, uref, corbo::Duration(dt), time, u_seq, x_seq, nullptr, nullptr, &_x_seq_init);  //求解问题

  这里会进入predictive_controller.cpp里面的step,这里sref和singal_target和uint都为nullptr,xinit是_x_seq_init
  _ocp->compute(x, xref, uref, sref, t, i == 0, signal_target, xinit, uinit, ns);  //求解器进行计算
  //后续进入strucured_optimal_control_problem.cpp

最优化问题求解接口

structured_optimal_control_problem.cpp

//当前点,参考点,参考U,nullptr,离散时间,第一次,nullptr,_x_seq_init,nullptr
bool StructuredOptimalControlProblem::compute(const StateVector& x, ReferenceTrajectoryInterface& xref, ReferenceTrajectoryInterface& uref,
                                              ReferenceTrajectoryInterface* sref, const Time& t, bool new_run, SignalTargetInterface* signal_target,
                                              ReferenceTrajectoryInterface* xinit, ReferenceTrajectoryInterface* uinit, const std::string& ns)
{
  //离散网络更新,超图构建,更新
  GridUpdateResult grid_udpate_result =
    _grid->update(x, xref, uref, _functions, *_edges, _dynamics, new_run, t, sref, &_u_prev, _u_prev_dt, xinit, uinit);  
  if (grid_udpate_result.vertices_updated)
  {
     _optim_prob->precomputeVertexQuantities();
  }
  if (grid_udpate_result.updated())
  {
     _optim_prob->precomputeEdgeQuantities();
  }  
  _solver->solve(*_optim_prob, grid_udpate_result.updated(), new_run, &_objective_value);
}

离散网格更新

full_discretization_grid_base_se2.cpp

corbo::GridUpdateResult FullDiscretizationGridBaseSE2::update(const Eigen::VectorXd& x0, ReferenceTrajectoryInterface& xref,
                                                              ReferenceTrajectoryInterface& uref, NlpFunctions& nlp_fun, OptimizationEdgeSet& edges,
                                                              SystemDynamicsInterface::Ptr dynamics, bool new_run, const corbo::Time& t,
                                                              ReferenceTrajectoryInterface* sref, const Eigen::VectorXd* prev_u, double prev_u_dt,
                                                              ReferenceTrajectoryInterface* xinit, ReferenceTrajectoryInterface* uinit)
{
  //设置_x_seq为参考轨迹,_u_seq为参考控制,一般为0
  initializeSequences(x0, xref.getReferenceCached(n - 1), xinit ? *xinit : xref, uinit ? *uinit : uref, nlp_fun);
  if (new_run || result.updated())  // new run -> new t
  {
     //更新各个边的状态
     result.edges_updated =
       nlp_fun.update(getN(), t.toSec(), xref, uref, sref, hasSingleDt(), x0, {getDt()}, this);  // returns true if edge dimensions changed
  }
  if (result.updated())  // vertices or eges updated
  {
     createEdges(nlp_fun, edges, dynamics);   //构建实际超图
     result.edges_updated = true;  // now we definitely updated the edgeset
  }
}

ipopt接口

nlp_solver_ipopt.cpp

SolverStatus SolverIpopt::solve(OptimizationProblemInterface& problem, bool new_structure, bool new_run, double* obj_value)
{
    _ipopt_nlp->setOptimizationProblem(problem);  //将问题指针传入nlp,nlp里面的计算过程全在problem里面
    //如果是第一次,先计算雅可比矩阵,海森矩阵
    if (new_structure)
    {
        _nnz_jac_constraints = problem.computeCombinedSparseJacobiansNNZ(false, true, true);

        problem.computeSparseHessiansNNZ(_nnz_hes_obj, _nnz_hes_eq, _nnz_hes_ineq, true);
        _nnz_h_lagrangian = _nnz_hes_obj + _nnz_hes_eq + _nnz_hes_ineq;

        _lambda_cache.resize(problem.getEqualityDimension() + problem.getInequalityDimension());
        _lambda_cache.setZero();

        _zl_cache.resize(problem.getParameterDimension());
        _zl_cache.setZero();

        _zu_cache.resize(problem.getParameterDimension());
        _zu_cache.setZero();

        // set max number of iterations
        _ipopt_app->Options()->SetIntegerValue("max_iter", _iterations);  // max_cpu_time // TODO(roesmann) parameter for number of iterations
    }

    if (_max_cpu_time > 0)
        _ipopt_app->Options()->SetNumericValue("max_cpu_time", _max_cpu_time);
    else if (_max_cpu_time == 0)
        _ipopt_app->Options()->SetNumericValue("max_cpu_time", 10e6);

    Ipopt::ApplicationReturnStatus ipopt_status;
    if (new_structure)
        ipopt_status = _ipopt_app->OptimizeTNLP(_ipopt_nlp);  //执行优化
    else
        ipopt_status = _ipopt_app->ReOptimizeTNLP(_ipopt_nlp);

    if (obj_value) *obj_value = _last_obj_value;

    return convertIpoptToNlpSolverStatus(ipopt_status);
}

ipoptWrapper接口

//计算目标函数
eval_f() 
{
  if (new_x)
    {
        Eigen::Map<const Eigen::VectorXd> x_map(x, n);
        _problem->setParameterVector(x_map);  //将更新的值传入顶点里面,供grid使用
        if (_solver->_cache_first_order_derivatives) precompute1stOrderDerivatives();
    }

    obj_value = _problem->computeValueObjective();  //计算目标函数cost
}

//计算约束g(x)
eval_g()
{
  if (new_x)
    {
        Eigen::Map<const Eigen::VectorXd> x_map(x, n);
        _problem->setParameterVector(x_map);
        if (_solver->_cache_first_order_derivatives) precompute1stOrderDerivatives();
    }
  Eigen::Map<Eigen::VectorXd> g_map(g, m);
  _problem->computeValuesEquality(g_map.head(_problem->getEqualityDimension()));
  _problem->computeValuesInequality(g_map.tail(_problem->getInequalityDimension()));
}

//计算雅可比
eval_jac_g()
{
  if (new_x)
  {
     Eigen::Map<const Eigen::VectorXd> x_map(x, n);
     _problem->setParameterVector(x_map);
     if (_solver->_cache_first_order_derivatives) precompute1stOrderDerivatives();
  }
  Eigen::Map<Eigen::VectorXd> values_map(values, nele_jac);
  if (_solver->_cache_first_order_derivatives)
      values_map = _solver->_jac_constr_cache;
  else
      _problem->computeCombinedSparseJacobiansValues(values_map, false, true, true);
}

posted @ 2024-01-15 17:04  penuel  阅读(180)  评论(1编辑  收藏  举报